• Title/Summary/Keyword: Power Transfer

Search Result 3,297, Processing Time 0.024 seconds

Analysis of the Efficiency According to Resonant Repeater Application in Magnetic Resonant Wireless Power Transfer System (자기공진방식의 무선전력전송 시스템에서 공진 중계기 적용 여부에 따른 전력전송 효율 분석)

  • Baek, Seung-Myung;Kim, Dong-Eun;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.67 no.4
    • /
    • pp.221-226
    • /
    • 2018
  • In this paper, the power transfer efficiency analysis based on the resonant repeater in a magnetic resonance wireless power transfer system is proposed. The efficiency of the magnetic resonance method was verified by comparing the general frequency with the resonance frequency. The resonance repeater was arranged to increase the efficiency and increase the transfer distance. When using resonant repeaters, the maximum efficiency increase is about 36.23[%] and the transfer distance was extended to more than 20[cm]. Through this study, confirmed the effect of using resonance repeaters in wireless power transfer system. As a result, it can be expected that the overall technology related to wireless power transfer system will be more valuable for energy-IT technology.

6.78MHz Capacitive Coupling Wireless Power Transfer System

  • Yi, Kang Hyun
    • Journal of Power Electronics
    • /
    • v.15 no.4
    • /
    • pp.987-993
    • /
    • 2015
  • Wireless power transfer technologies typically include inductive coupling, magnetic resonance, and capacitive coupling methods. Among these methods, capacitive coupling wireless power transfer (CCWPT) has been studied to overcome the drawbacks of other approaches. CCWPT has many advantages such as having a simple structure, low standing power loss, reduced electromagnetic interference (EMI) and the ability to transfer power through metal barriers. In this paper, the CCWPT system with 6.78MHz class D inverter is proposed and analyzed. The proposed system consists of a 6.78MHz class D inverter with a LC low pass filter, capacitor between a transmitter and a receiver, and impedance transformers. The system is verified with a prototype for charging mobile devices.

Wireless Power Transfer via Magnetic Resonance Coupling (MRC) with Reduced Standby Power Consumption

  • Lee, Byoung-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.637-644
    • /
    • 2019
  • Wireless power transfer (WPT) technology with various transfer mechanisms such as inductive coupling, magnetic resonance and capacitive coupling is being widely researched. Until now, power transfer efficiency (PTE) and power transfer capability (PTC) have been the primary concerns for designing and developing WPT systems. Therefore, a lot of studies have been documented to improve PTE and PTC. However, power consumption in the standby mode, also defined as the no-load mode, has been rarely studied. Recently, since the number of WPT products has been gradually increasing, it is necessary to develop techniques for reducing the standby power consumption of WPT systems. This paper investigates the standby power consumption of commercial WPT products. Moreover, a standby power reduction technique for WPT systems via magnetic resonance coupling (MRC) with a parallel resonance type resonator is proposed. To achieve a further standby power reduction, the voltage control of an AC/DC travel adapter is also adopted. The operational principles and characteristics are described and verified with simulation and experimental results. The proposed method greatly reduces the standby power consumption of a WPT system via MRC from 2.03 W to 0.19 W.

A Feedback Circuit of Effective Wireless Power Transfer for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.480-483
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smartphone to high power electric railroad. In this paper, the model of wireless power transfer circuit for the low power system is designed for a resonant frequency of 13.45 MHz. Also, a feedback WPT circuit to improve the power transfer efficiency is proposed and shown better performance than the original open WPT circuit, and the methodology for power efficiency improvement is studied as the coupling coefficient increases above 0.01, at which the split frequency is made.

Contactless Power Charger for Light Electric Vehicles Featuring Active Load Matching

  • Jiang, Wei;Xu, Song;Li, Nailu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.102-110
    • /
    • 2016
  • Contactless power transfer technology is gaining increasing attention in city transportation applications because of its high mobility and flexibility in charging and its commensurate power level with conductive power transfer method. In this study, an inductively coupled contactless charging system for a 48 V light electric vehicle is proposed. Although this study does not focus on system efficiency, the generic problems in an inductively coupled contactless power transfer system without ferromagnetic structure are discussed. An active load matching method is also proposed to control the power transfer on the receiving side through a load matching converter. Small signal modeling and linear control technology are applied to the load matching converter for port voltage regulation, which effectively controls the power flow into the load. A prototype is built, and experiments are conducted to reveal the intrinsic characteristics of a series-series resonant inductive power charger in terms of frequency, air gap length, power flow control, coil misalignment, and efficiency issues.

Design Methodology of 500 W Wireless Power Transfer Converter for High Power Transfer Efficiency (500 W 급 무선전력전송 컨버터의 고효율 설계 방법)

  • Kim, Mina;Park, Hwapyeong;Jung, Jee-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • The design methodology of an adequate input voltage and magnetizing inductance to minimize reactive power is suggested to design a wireless power transfer (WPT) converter for high-power transfer efficiency. To increase the magnetizing inductance, the turn number of the WPT coil is increased, thus causing high parasitic resistance in the WPT coil. Moreover, the high coil resistance produces high conduction loss in the transfer and receive coils. Therefore, the analysis of conduction loss is used in the design of the WPT coil and the operating point of the WPT converter. To verify the proposed design methodology, the mathematical analysis of the conduction loss is presented by experimental results.

Characteristic analysis of inductive power transfer system by parameter variation (파라미터 변화에 따른 유도급전 시스템 특성해석)

  • Lee, Byung-Song;Bae, Chang-Han;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.215-217
    • /
    • 2004
  • This paper shows the analysis of the inductive power transfer system in conjunction with series resonant converter operating variable high frequency. Of particular interest is the sensitivity of the complete system to variations in operational frequency and parameters. In inductive power transfer system, electrical power is transferred from a primary winding in the form of a coil or track, to one or more isolated pick-up coils that may relative to the primary. The ability to transmit power without contact enables high reliability and easy maintenance that allows inductive power transfer system to be implemented in hostile environments. This technology has found application in many fields such as electric vehicles, PRT(Personal Rapid Transit) etc. The coupling between the primary and secondary is then presented to include the effects of parameter and operational frequency variation.

  • PDF

Wireless Power Transfer Technology in On-Line Electric Vehicle

  • Ahn, Seung-Young;Chun, Yang-Bae;Cho, Dong-Ho;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.174-182
    • /
    • 2011
  • The On-line Electric Vehicle (OLEV) is an electric transport system in which the vehicle's power is transferred wirelessly from power lines underneath the surface of the road. Advantages of the OLEV include reducing battery size and cost to about 20 percent of that of conventional battery-powered electric vehicles, thereby minimizing the vehicle's weight and price, as well as the cost of charging the system. In this paper, we introduce a wireless power transfer mechanism to maximize the electrical performance of the power transfer system. Power transfer capacity, power transfer efficiency, and magnitude of leakage in the electromagnetic field (EMF) are analyzed, and the optimization methodology of the design parameters is discussed.

A Novel Receiver Sensing Scheme for Capacitive Power Transfer System (전계결합 무선전력전송의 수신부 감지 방법)

  • Jeong, Chae-Ho;Im, Hwi-Yeol;Choi, Sung-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.1
    • /
    • pp.62-65
    • /
    • 2019
  • Wireless power transfer systems require an algorithm to determine the presence of the target object for mitigating standby power and safety issues. Although many schemes that sense various external objects have been actively proposed for inductive power transfer systems, not many studies on capacitive power transfer systems have been conducted compared with those on inductive power transfer systems. This study proposes a target object detection algorithm by monitoring the capacitance in transmitter-side electrodes without additional pressure sensors or distance sensors. The proposed algorithm determines the presence of a target object by monitoring the change in capacitance in transmitter-side electrodes using the step pulse of the microcontroller unit. The algorithm is verified by two step processes. First, the performance in capacitance measurement is compared with that of an LCR meter. Then, the verification is conducted in a 5-W capacitive power transfer hardware. Experimental result shows that the interelectrode capacitance increases by 6 times when the target object is fully aligned. Thus, the proposed scheme can successfully detect the presence of the target object.

Effects of the Training Transfer Management on the Workers in Nuclear Power Plants

  • Kim, Seonsu;Luo, Meiling;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.49-58
    • /
    • 2014
  • Objective: The aim of this study is to enhance the efficiency of education and training through application and management of 'Transfer of Training' in nuclear power plants. Background: Despite the sophistication and standardization of job-related skills and techniques of workers, accidents/incidents keep taking place due to human errors and unsafe actions and behaviors, which translates into the necessity to review and examine the effectiveness and influence of education and training on the workers of nuclear power plants. Method/Results: This study drew the factors of 'Transfer of Training' through a review on the preceding studies and document research. In addition, through expert examination, this study explored the expected effects and possibility of application when managing the influencing factors of 'Transfer of Training' in nuclear power plants. And lastly, management priority order for nuclear power plants was drawn through an AHP analysis. Conclusion: Among the 'Transfer of Training' factors, the training design factor was the most important. In addition, the design of the training and transfer and goal setting showed a high degree of importance among the influencing factors. Application: The management of 'Transfer of Training' in nuclear power plants enhances the capability of workers and improves the operational integrity of nuclear power plants.