• Title/Summary/Keyword: Power System Oscillation

Search Result 249, Processing Time 0.026 seconds

SVC & TCSC Effects Power System in Multi-Machine (다기계통에서의 SVC와 TCSC특성 해석)

  • Sul, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.658-660
    • /
    • 1996
  • This paper prescribe the effects of SVC & TCSC in multi-machine power system. EMTP models of two FACTS controllers are proposed to analysis the basic characteristics of SVC & TCSC and the control signal of TCR is determined by rms value which was measured in system. The oscillation model of generator is proposed to analysis the damping effect and the most effective location of TCSC in multi-machine power system is identified by the residues associated with the natural oscillation modes. The 3 generator-9 bus model system is used to demonstrate the applicability of the proposed model.

  • PDF

A Parameter Estimation of Time Signal and Analysis of Low Frequency Oscillation in Power Systems (시간영역에서 파라미터 추정과 전력계통의 저주파진동 해석)

  • Shim Kwan-Shik;Nam Hae-Kon;Kim Yong-Gu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.3
    • /
    • pp.122-132
    • /
    • 2005
  • This paper presents a novel approach based on Prony method to analysis of small signal stability in power system. Prony method is a valuable tool in identifying transfer function and estimating the modal parameter of power system oscillation from measured or computed discrete time signal. This paper define the relative residue of time signal and propose the condition to select low frequency oscillation in each generator. This paper describes the application results of proposed algorithm with respect to KEPCO systems. Simulation results show that the proposed algorithm can be used as another tools of power systems analysis.

Effect Analysis of the Low Frequency Oscillation Mode of Inter-area System According to Load Characteristics (부하특성이 지역간 계통의 저주파 진동 모드 해석에 미치는 영향 분석)

  • Kim, Hak-Man
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.10
    • /
    • pp.1703-1707
    • /
    • 2008
  • Low frequency oscillation of inter-area system is important problem in power system areas because the operation conditions of power system depend on it. Generally, the analysis of the problem is used by small signal stability. Especially, the analysis results are affected by decision of load models. In this paper, the effect of the analysis results was studied according to load component characteristics. ZIP model, popular in large-scaled power system analysis, was used as the load model. Many cases were studied according to the combination of ZIP model in inter-area system.

Parameter Selection Method for Power System Stabilizer of a Power Plant based on Hybrid System Modeling (하이브리드시스템 모델링 기반 발전기 전력시스템 안정화장치 정수선정 기법)

  • Baek, Seung-Mook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.883-888
    • /
    • 2014
  • The paper describes the parameter tuning of power system stabilizer (PSS) for a power plant based on hybrid system modeling. The existing tuning method based on bode plot and root locus is well applied to keep power system stable. However, due to linearization of power system and an assumption that the parameter ratio of the lead-lag compensator in PSS is fixed, the results cannot guarantee the optimal performances to damp out low-frequency oscillation. Therefore, in this paper, hybrid system modeling, which has a DAIS (differential-algebraic-impusive-switched) structure, is applied to conduct nonlinear modeling for power system and find optimal parameter set of the PSS. The performances of the proposed method are carried out by time domain simulation with a single machine connected to infinite bus (SMIB) system.

Spectral Analysis of LFO Using Synchrophasor in KEPCO Systems (Synchrophasor를 이용한 한전계통의 저주파 진동 스펙트럴 해석)

  • Shim, Kwan-Shik;Choi, Jun-Ho;Kim, Sang-Tae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.63-73
    • /
    • 2013
  • The parameters of electromechanical modes offer considerable insight into the dynamic stability properties of a power system. This paper presents a results of a LFO(low-frequency oscillation) based on the time-synchronized signals measured by synchrophasor in the rolling blackout. Spectral analysis was performed, and critical parameters were estimated using the data acquired from synchrophasors installed in the KEPCO system. As significant modes, a 0.68 Hz oscillation mode that occurred prior to the forced load shedding in the rolling blackout was estimated. Such an oscillation mode can cause an uncontrollable blackout. Therefore, the system should be operated so that significant oscillation modes are not activated. This results can serve as a reference in the future for reliable system operation in the event of a similar blackout.

Identification of Power System Oscillation Using DFT Algorithm (DFT 알고리즘을 이용한 전력계통 동요모드 확인)

  • Kim, Dong-Joon;Moon, Young-Hwan;Kim, Yong-Hak;Yoon, Yong-Beum
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.5
    • /
    • pp.218-224
    • /
    • 2001
  • This paper describes the identification of torsional modes and power oscillation modes including the inter-area modes and local modes of KEPCO using the proposed DFT analysis algorithm which is applied to the digitally recorded RMS values of power system variables such as steady-state measured active power, load angle and so on. As a result, the inter-area mode of 0.65Hz and the local modes of the three different generators were identified. In addition the torsional modes of two steam-turbo generators were analyzed by applying the DFT algorithm. Thus, this paper clearly shows the availability of the proposed DFT algorithm that can analyze the digitally recorded effective values measured from the equipment such as PMU of DSM.

  • PDF

Design of HVDC System 550 Damping Controller Using Novel Eigenvalue Analysis Program (신고유치 해석 프로그램을 이용한 직류계통 축비틀림 진동 댐핑 제어기 설계)

  • 김동준;남해곤;문영환;김용구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.140-151
    • /
    • 2004
  • This paper presents the HVDC system modelling for analysis of subsynchronous oscillation and the design of the subsynchronous oscillation damping controller in HVDC system with the aid of novel eigenvalue analysis program. The HVDC system models include both the steady-state model for power flow calculation and the dynamic model for constructing the state matrix. The design procedures of the subsynchronous oscillation damping controller (SODC), which is integrated with PI controller at rectifier, consist of three steps:1) to identify the dominant torsional oscillation mode in the AC/DC system;2) to determine the parameters of the SODC for compensating the phase lagging due to the rectifier controller;3) to validate the control parameters and to determine the appropriate gain using a time-domain simulation program. The proposed design method has been tested against two AC/DC systems for validation.

Application of energy function control strategy to VSC based UPFC Model (전압원 컨버터 기반의 UPFC 모델에 대한 에너지 함수 제어전략의 적용)

  • Kook, Kyung-Soo;Oh, Tae-Kyoo;Chun, Yeong-Han;Kim, Hak-Man;Kim, Tai-Hyun;Jeon, Jin-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.259-261
    • /
    • 2000
  • UPFC(Unified Power Flow Controller) consists of two voltage sourced converter(VSC)s inserted into AC system through series and parallel coupling transformer, where two VSCs are linked by capacitor at DC-side. Since VSC acts as an AC voltage source behind a reactance, where both magnitude and phase angle of the source are controllable, UPFC can be represented by the equation related to input-output relation of two VSCs. Voltage control of DC-link capacitor provides the path of real power flow between two VSCs. While UPFC is controlled for maintaining the given reference value in steady state, it should be controlled for damping power oscillation in dynamics. For such a control objective, the control strategy based on the energy function was proposed and has been shown to be effect and robust for damping power oscillation of power system. In this paper, UPFC model based on the VSC was analysed and applied to power-flow control and stability analysis. The control strategy based on the energy function is adopted for damping power oscillation of power system. The effectiveness of proposed control strategy was verified by simulation study

  • PDF

Primary Current Generation for a Contactless Power Transfer System Using Free Oscillation and Energy Injection Control

  • Li, Hao Leo;Hu, Aiguo Patrick;Covic, Grant Anthony
    • Journal of Power Electronics
    • /
    • v.11 no.3
    • /
    • pp.256-263
    • /
    • 2011
  • This paper utilizes free oscillation and energy injection principles to generate and control the high frequency current in the primary track of a contactless power transfer system. Here the primary power inverter maintains natural resonance while ensuring near constant current magnitude in the primary track as required for multiple independent loads. Such energy injection controllers exhibit low switching frequency and achieve ZCS (Zero Current Switching) by detecting the high frequency current, thus the switching stress, power losses and EMI of the inverter are low. An example full bridge topology is investigated for a contactless power transfer system with multiple pickups. Theoretical analysis, simulation and experimental results show that the proposed system has a fast and smooth start-up transient response. The output track current is fully controllable with a sufficiently good waveform for contactless power transfer applications.

Analysis of Oscillation Modes Occurred by Thyristor Switching Operations of the TCSC in OMIB System (TCSC를 포함한 일기무한모선계통에서 싸이리스터의 스위칭에 의한 진동모드 해석)

  • Dong, Moo-Hwan;Lee, Yun-Ho;Kim, Deok-Young
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.12-13
    • /
    • 2006
  • In this paper, RCF(Resistive Companion Form) analysis method which is used to analyze small signal stability problems of non-continuous systems including switching device. The RCF analysis method are applied to the power systems with the thyristor controled FACTS equipments such as TCSC. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with switching devices such as FACTS equipments. As an applicable example of the RCF method in power system, the one machine infinite bus system including TCSC at generator terminal bus is investigated and the results proved that variations of oscillation modes after periodic switching operations of TCSC can be calculated exactly.

  • PDF