• Title/Summary/Keyword: Power System Measurement

Search Result 2,042, Processing Time 0.033 seconds

Bad Data Detection Method in Power System State Estimation (전력계통 상태 추정에서의 불량정보 검출기법)

  • Choi, Sang-Bong;Moon, Young-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.239-243
    • /
    • 1990
  • This paper presents a algorithm to improve accuracy and reliability in state estimation of contaminated bad data. The conventional algorithms for detection of bad data confront the problems of excessive memory requirements and long computation time. In order to overcome measurement compensation approach is proposed to reduce computation time and partitioned measurement error model has the advantage of remarkable reduction in computation time and memory requirements in estimated error computation. The proposed algorithm has been tested for IEEE sample systems, which shows its applicability to on-line power systems.

  • PDF

Ghost and Blocking of TV signal by UHV Transmission Lines (대형 송전선로에 의한 TV 전파장해 고찰)

  • Shin, Koo-Yong;Lee, Dong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1776-1778
    • /
    • 1998
  • KEPCO has been constructing the 765 kV double circuit transmission line since 1997. It is worried that the 765 kV transmission lines make TV interference(Ghost and Blocking) due to high tower and multi sub-conductors. This paper presents the mechanism, the measuring method and the results of TV ghost and blocking measurement using a new TV ghost measurement system in a vehicle which was developed by KEPRI.

  • PDF

Bad Data Detection Method in Power System State Estimation (전력계통 상태주정에서의 불량정보 검출기법)

  • 최상봉;문영현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.2
    • /
    • pp.144-153
    • /
    • 1991
  • This paper presents an algorithm to improve accuracy and reliability in the state estimation of contaminated bad data. The conventional algorithms for detection of bad data have the problems of excessive memory requirements and long computation time. In order to overcome these problems, a measurement compensation approach is proposed to reduce computation time, and the partitioned measurement error model has the advantage of remarkable reduction in computation time and memory requirements in estimated error computation. The proposed algorithm has been tested for IEEE sample systems, which shows its applicability to on-line power systems.

Design and Building of Flow-rate Measurement Apparatus for Compressible Fluid (압축성유체 유량계측장치 설계 및 제작)

  • Ji, S.W.;Jang, J.S.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.29-33
    • /
    • 2013
  • Pneumatic system is widely applied in various industry because it have a many advantage(low cost, high safety, etc..). For design of pneumatic system, accurate flow measurement is required. In this study, compressible fluid flow measurement apparatus was designed and built. It uses an isothermal chamber that can approximate isothermal condition. Therefore, it can be measured for flow-rate using pressure response of isothermal chamber. As a result, this apparatus can be measured for sonic conductance and critical pressure ratio of pneumatic components and it required less time and energy than conventional flow meter. The effectiveness of the designed apparatus is proved by experimental result.

Non-contact monitoring of 3-dimensional vibrations of bodies using a neural network

  • Ha, Sung Chul;Cho, Gyeong Rae;Doh, Deog-Hee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.10
    • /
    • pp.1011-1016
    • /
    • 2015
  • Gas piping systems in power plants and factories are always influenced by the mechanical vibrations of rotational machines such as pumps, blowers, and compressors. Unusual vibrations in a gas piping system influence possible leakages of liquids or gases, which can lead to large explosive accidents. Real-time measurements of unusual vibrations in piping systems in situ prohibit them from being possible leakages owing to the repeated fatigue of vibrations. In this paper, a non-contact 3-dimensional measurement system that can detect the vibrations of a solid body and monitor its vibrational modes is introduced. To detect the displacements of a body, a stereoscopic camera system is used, through which the major vibration types of solid bodies (such as X-axis-major, Y-axis-major, and Z-axis-major vibrations) can be monitored. In order to judge the vibration types, an artificial neural network is used. The measurement system consists of a host computer, stereoscopic camera system (two-camera system, high-speed high-resolution camera), and a measurement target. Through practical application on a flat plate, the measured data from the non-contact measurement system showed good agreement with those from the original vibration mode produced by an accelerator.

Distance Measurement by Automatic Peak Detection for Indoor Positioning Using Spread Spectrum Ultrasonic Waves

  • Suzuki, Akimasa;Miyara, Yasuaki;Iyota, Taketoshi;Kim, Young-Bok;Choi, Yong-Woon
    • Journal of Power System Engineering
    • /
    • v.19 no.2
    • /
    • pp.33-39
    • /
    • 2015
  • In conducting indoor positioning by code division multiple access using spread spectrum ultrasonic waves, it is required to detect signals under the influence of near-far problem occurred by difference on signal power, caused by distance between transmitter and receiver. For discussing robustness to the problem, we verified measuring accuracy on distance from an experiment on a real space with a hardware device where our proposed method is mounted. The proposed method performs automatic signal detection by setting threshold level dynamically. As an experimental result, measurable distance were improved by the proposed method, and measurement errors were up to 50mm in distances from 1000mm to 6000mm; therefore, enough accuracy to realize self-localization or navigation for autonomous mobile robot or human was obtained.

Research about RFID make use of power control on Localization of mobile robot (RFID 파워 컨트롤을 이용한 이동로봇의 위치 추정에 관한 연구)

  • Jung, Ki-Ho;Jang, Cheol-Woong;Sim, Hyeon-Min;Jang, Seung-Gwan;Lee, Eung-Hyuk
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.557-559
    • /
    • 2006
  • In this paper we analyze whether recent Radio Frequence Identification technology can be used to improve the localization of mobile robot and persons in their environment. In particular we study the problem of localizing RFID tags with a mobile platform that is equipped with a pair of RFID antennas. This system make use of power control because Tag with Reader distance measurement. We are accurately the low at former time than the environment. A distance measurement is rather correct. This system uses 900MHz Frequencies.

  • PDF

Development of 3-dimensional measuring robot cell (3차원 측정 로보트 셀 개발)

  • Park, Kang;Cho, Koung-Rae;Shin, Hyun-Oh;Kim, Mun-Sang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.1139-1143
    • /
    • 1991
  • Using industrial robots and sensors, we developed an inline car body inspection system which proposes high flexibility and sufficient accuracy. Car Body Inspection(CBI) cell consists of two industrial robots, two corresponding carriages, camera vision system, a process computer with multi-tasking ability and several LDS's. As industrial robots guarantee sufficient repeatabilities, the CBI cell adopts the concept of relative measurement instead of that of absolute measurement. By comparing the actual measured data with reference data, the dimensional errors of the corresponding points can be calculated. The length of the robot arms changes according to ambient temperature and it affects the measuring accuracy. To compensate this error, a robot arm calibration process was realized. By measuring a reference jig, the differential changes of the robot arms due to temperature fluctuation can be calculated and compensated.

  • PDF

A Comparative Study on Frequency Estimation Methods

  • Kim, Yoon Sang;Kim, Chul-Hwan;Ban, Woo-Hyeon;Park, Chul-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.70-79
    • /
    • 2013
  • In this paper, a comparative study on the frequency estimation methods using IRDWT (Improved Recursive Discrete Wavelet Transform), FRDWT(Fast Recursive Discrete Wavelet Transform), and GCDFT(Gain Compensator Discrete Fourier Transform) is presented. The 345[kV] power system modeling data of the Republic of Korea by EMTP-RV is used to evaluate the performance of the proposed two kinds of RDWT(IRDWT and FRDWT) and GCDFT. The simulation results show that the frequency estimation technique based on FRDWT could be the optimal frequency measurement method, and thus can be applied to FDR(Fault Disturbance Recorder) for wide-area blackout protection or frequency measurement apparatus.