• 제목/요약/키워드: Power Switching Method

검색결과 1,319건 처리시간 0.025초

Three-Level NPC-Based Dual Active Bridge Converter의 도통손실 절감을 위한 새로운 스위칭 방법 (A Control Method to Improve Power Conversion Efficiency of Three-level NPC-Based Dual Active Bridge Converter)

  • 이준영;최현준;김주용;정지훈
    • 전력전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.150-158
    • /
    • 2017
  • This study proposes a new pulse-width modulation switching pattern for the low conduction loss of a three-level neutral point clamped (NPC)-based dual-active bridge (DAB) converter. The operational principle for a bidirectional power conversion is a phase-shift modulation. The conventional switching method of the three-level NPC-based DAB converter shows a symmetric switching pattern. This method has a disadvantage of high root-mean-square (RMS) value of the coupling inductor current, which leads to high conduction loss. The proposed switching method shows an asymmetrical pattern, which can reduce the RMS value of the inductor current with lower conduction loss than that of the conventional method. The performance of the proposed asymmetrical switching method is theoretically analyzed and practically verified using simulation and experiment.

Turn-on Loss Reduction for High Voltage Power Stack Using Active Gate Driving Method

  • Kim, Jin-Hong;Park, Joon Sung;Gu, Bon-Gwan;Won, Chung-Yuen
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.632-642
    • /
    • 2017
  • This paper presents an improved approach towards reducing the switching loss of insulated gate bipolar transistors (IGBTs) for a medium-capacity-class power conditioning system (PCS). In order to improve the switching performance, the switching operation is analyzed, and based on this analysis, an improved switching method that reduces the switching time and switching loss is proposed. Compared to a conventional gate drive scheme, the switching loss, switching time, and delay are improved in the proposed gate driving method. The performance of the proposed gate driving method is verified through several experiments.

An Effective Carrier-Based Modulation Strategy to Reduce the Switching Losses for Indirect Matrix Converters

  • Tran, Quoc-Hoan;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.702-711
    • /
    • 2015
  • In this paper, an effective carrier-based modulation (CBM) strategy to reduce the switching losses for indirect matrix converters (IMCs) is presented. The discontinuous pulse width modulation method is applied to decrease the switching numbers in one carrier cycle, and an optimum offset voltage is selected to avoid commutations of the high output phase currents. By decreasing the switching numbers along with avoiding commutation of the high currents, the proposed CBM strategy significantly reduces the switching losses in IMCs. In addition, the proposed CBM strategy is independent of load conditions, such as load power and power factor, and it has good performance in terms of the input/output waveforms. Simulation and experimental results are provided to verify the effectiveness of the proposed CBM strategy.

소형 전원용 스위칭 파워 모듈 (Switching Power Module for a Small-Sized Electric Power Source)

  • 김병철
    • 한국정보통신학회논문지
    • /
    • 제8권5호
    • /
    • pp.1068-1073
    • /
    • 2004
  • 전원장치의 소형화 핵심기술인 반도체 스위칭 기술을 이용하여 5 V/500 mA급 트랜스리스형 파워모듈(transless type power module)을 설계하였다. 파워 모들은 강압형 chopper 방식을 이용하였으며, 스위칭회로, 제어회로, 전압검출회로, 그리고 정전압 회로 등으로 구성되어 었다. 본 연구에서 설계한 스위칭 파워모듈은 0.2 V의 load regulation, 0.1 V의 line regulation, 85 mVp-p의 output ripple 전압, 64.7 kHz의 스위칭 주파수, 최대 58% 정도의 효율을 나타내었으며, 신뢰성 및 EMC 평가항목을 만족하였다.

TCSC를 포함한 일기무한모선계통에서 싸이리스터의 스위칭에 의한 진동모드 해석 (Analysis of Oscillation Modes Occurred by Thyristor Switching Operations of the TCSC in OMIB System)

  • 동무환;이윤호;김덕영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.12-13
    • /
    • 2006
  • In this paper, RCF(Resistive Companion Form) analysis method which is used to analyze small signal stability problems of non-continuous systems including switching device. The RCF analysis method are applied to the power systems with the thyristor controled FACTS equipments such as TCSC. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with switching devices such as FACTS equipments. As an applicable example of the RCF method in power system, the one machine infinite bus system including TCSC at generator terminal bus is investigated and the results proved that variations of oscillation modes after periodic switching operations of TCSC can be calculated exactly.

  • PDF

GTO 제어 SSSC가 설치된 계통의 RCF 해석법에 의한 고유치 해석 (Eigenvalue Analysis of Power Systems with GTO Controlled SSSC by the RCF Method)

  • 동무환;김덕영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.230-231
    • /
    • 2006
  • In this paper, the RCF(Resistive Companion Form) analysis method is used to analyze small signal stability of power systems including GTO controlled FACTS equipment such as SSSC. To apply the RCF analysis method in power system small signal stability problems, state transition equations of power system equipments and power systems with SSSC are presented. In eigenvalue analysis of power systems by the RCF analysis method, SSSC is modelled into the equivalents voltage source model and PWM switching circuit model. As a result of simulation, the RCF method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodic switching device such as SSSC.

  • PDF

Switching Transient Shaping by Application of a Magnetically Coupled PCB Damping Layer

  • Hartmann, Michael;Musing, Andreas;Kolar, Johann W.
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.308-319
    • /
    • 2009
  • An increasing number of power electronic applications require high power density. Therefore, the switching frequency and switching speed have to be raised considerably. However, the very fast switching transients induce a strong voltage and current ringing. In this work, a novel damping concept is introduced where the parasitic wiring inductances are advantageously magnetically coupled with a damping layer for attenuating these unwanted oscillations. The proposed damping layer can be implemented using standard materials and printed circuit board manufacturing processes. The system behavior is analyzed in detail and design guidelines for a damping layer with optimized RC termination network are given. The effectiveness of the introduced layer is determined by layout parasitics which are calculated by application of the Partial Element Equivalent Circuit (PEEC) simulation method. Finally, simulations and measurements on a laboratory prototype demonstrate the good performance of the proposed damping approach.

A Gate Drive Circuit for Low Switching Losses and Snubber Energy Recovery

  • Shimizu, Toshihisa;Wada, Keiji
    • Journal of Power Electronics
    • /
    • 제9권2호
    • /
    • pp.259-266
    • /
    • 2009
  • In order to increase the power density of power converters, reduction of the switching losses at high-frequency switching conditions is one of the most important issues. This paper presents a new gate drive circuit that enables the reduction of switching losses in both the Power MOSFET and the IGBT. A distinctive feature of this method is that both the turn-on loss and the turn-off loss are decreased simultaneously without using a conventional ZVS circuit, such as the quasi-resonant adjunctive circuit. Experimental results of the switching loss of both the Power MOSFET and the IGBT are shown. In addition, an energy recovery circuit suitable for use in IGBTs that can be realized by modifying the proposed gate drive circuit is also proposed. The effectiveness of both the proposed circuits was confirmed experimentally by the buck-chopper circuit.

RCF 해석법을 사용한 STATCOM의 진동모드 해석 (Analysis of Oscillation Modes of the STATCOM by the RCF Method)

  • 이윤호;김덕영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.228-229
    • /
    • 2006
  • The RCF analysis method is used to analyze small signal stability of power systems including GTO controlled FACTS equipment such as STATCOM. To apply the RCF analysis method in power system small signal stability problems, the state transition equations of power system equipments and power systems with STATCOM are presented. In eigenvalue analysis of power systems by the RCF analysis method, the STATCOM is modelled into the equivalents voltage source model and the PWM switching circuit model. As a result of simulation, the RCF analysis method is very powerful to calculate the oscillation modes exactly after the switching operations, and useful to analyze the small signal stability of power systems with periodically operated switching device such as the STATCOM.

  • PDF

태양광 발전을 위한 대용량 소프트 스위칭 승강압 DC-DC 컨버터 (High Power Buck-boost DC-DC Converter of Soft Switching for Photovoltaic Power Generation)

  • 김영철;김재준;이종근;전중함;곽동걸;이현우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.117-120
    • /
    • 1996
  • Power conversion system must be increased switching frequency in order to achieve a small size, a light weight and a low noise. However, the switches of converter are subjected to high switching power losses and switching stresses. As a result of those, the power system brings on a low efficiency. In this paper, the authors propose a DC-DC boost converter of high power by partial resonant switch method (PRSM). The switching devices in a proposed circuit are operated with soft switching and the control technique of those is simplified for switch to drive in constant duty cycle. The partial resonant circuit makes use of a inductor using step up and a condenser of loss-less snubber. Also the circuit has a merit which is taken to increase of efficiency, as it makes to a regeneration at input source of accumulated energy in snubber condenser without loss of snubber in conventional circuit. The result is that the switching loss is very low and the efficiency of system is high. The proposed converter is deemed the most suitable for high power applications where the power switching devices are used.

  • PDF