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Abstract 

 
In this paper, an effective carrier-based modulation (CBM) strategy to reduce the switching losses for indirect matrix converters 

(IMCs) is presented. The discontinuous pulse width modulation method is applied to decrease the switching numbers in one carrier 
cycle, and an optimum offset voltage is selected to avoid commutations of the high output phase currents. By decreasing the 
switching numbers along with avoiding commutation of the high currents, the proposed CBM strategy significantly reduces the 
switching losses in IMCs. In addition, the proposed CBM strategy is independent of load conditions, such as load power and power 
factor, and it has good performance in terms of the input/output waveforms. Simulation and experimental results are provided to 
verify the effectiveness of the proposed CBM strategy. 
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I. INTRODUCTION 
A matrix converter (MC) is a direct AC-to-AC power 

converter capable of generating an output voltage with an 
arbitrary amplitude and frequency from an AC power supply 
[1]. The MC has recently become more attractive because it 
has a number of advantages such as sinusoidal input/output 
current waveforms, a controllable input power factor, a simple 
and compact structure due to the absence of energy storage 
devices, and a bidirectional power flow [2]-[4]. MCs are 
generally divided into two types: the direct matrix converter 
(DMC) and the indirect matrix converter (IMC). IMCs and 
DMCs have similar performance in terms of their input/output 
current waveforms and voltage transfer ratios. Recently, the 
IMC in Fig. 1 has received more interest when compared to the 
DMC, due to its additional advantages, such as a simpler 
commutation and clamp circuit and an option to reduce the 
number of power switches for low-cost applications [5]-[12]. 

Despite their many interesting features, industrial 
applications for MCs are still not equivalent to their capability 

because they also have inherent problems. In terms of 
converter efficiency, the MC is known as an all-silicon power 
converter, and it causes higher switching losses than other 
AC/AC converter topologies. MC topologies usually use 18 
insulated gate bipolar transistors (IGBTs) and 18 diodes 
compared to 6 IGBTs and 12 diodes in the diode 
rectifier/voltage source inverter (VSI) topology, and 12 IGBTs 
and 12 diodes in the back-to-back converter. A large number of 
semiconductor devices in a topology increases the switching 
losses of the converter. Switching losses reduce the efficiency 
of the system , and increase the need for cooling devices. 

Several solutions have been proposed in order to reduce 
switching losses and increase efficiency in MCs. Kolar et al 
introduced a new modulation scheme to minimize the 
switching losses of a sparse MC in the low modulation range 
by using medium and minimum input line voltages to generate 
DC-link voltage [13]. A similar method, based on the space 
vector approach, can reduce switching losses from 15% to 35%, 
depending on the output power factor angle [14]. However, 
these methods are only applicable when the voltage transfer 
ratios are lower than 0.5. 

Casadei et al [15] and Bradaschia et al [16] developed 
effective techniques to reduce switching losses based on 
discontinuous modulation. Casadei et al [15] exploited the 
features of the duty cycle space vector approach to reduce 
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switching losses. This can decrease the switching numbers in 
one cycle and preserve the maximum voltage transfer ratio 
when compared with other methods. However, some of the 
switching states appear at high currents and high voltages, 
which results in high switching losses. Using generalized scalar 
pulse width modulation (PWM) to reduce switching losses in 
direct MCs was proposed by Bradaschia et al [16]. Although 
this technique can avoid commutation of the high output 
currents, the reduction of the switching numbers is not 
guaranteed during some sampling cycles. Itoh et al [17] 
introduced a control method that eliminates the switching 
losses in the inverter stage of an IMC. However, the total 
switching losses in the converter do not decrease, because the 
switching losses of the inverter stage are moved to the rectifier 
stage by adopting the zero voltage switching operation in the 
inverter stage instead of the rectifier stage. A predictive control 
approach to reduce the switching losses of direct MCs was 
presented by Vargas et al [18]. Most of the aforementioned 
research is focused on direct MCs. Switching loss reduction in 
IMCs has not been sufficiently studied until now. 

This paper presents a modulation strategy based on the CBM 
method to minimize the switching losses in an IMC. The 
proposed CBM strategy uses a discontinuous modulation 
technique to clamp each output leg of the IMC while it 
conducts the largest current. This achieves a reduction in the 
switching numbers when compared with the traditional 
modulation strategy. Furthermore, the proposed CBM strategy 
can avoid commutation at the high magnitude of the output 
phase current by selecting a proper offset voltage. This 
significantly reduces the switching losses in the IMC. 
Therefore, this strategy reduces the switching numbers and 
guarantees only medium and low current commutations. 
Nevertheless, the proposed CBM strategy generates good 
performance in terms of the input/output current waveforms 
and keeps the maximum output voltage transfer ratio of the 
IMC, which are the drawbacks of previous modulation 
methods that minimize switching losses. The feasibility of the 
proposed CBM strategy is verified by simulation and 
experiment results. 

 

II. CONVENTIONAL CBM STRATEGY AND 
SWITCHING LOSSES ANALYSIS IN AN IMC 

 

The IMC topology is composed of two stages, as shown in 
Fig. 1. It has a rectifier stage and an inverter stage, and is 
well-known as a two-stage MC. The main objective of the 
rectifier stage is to provide a positive DC-link voltage and to 
generate sinusoidal input phase currents. The inverter stage is 
similar to that of a three-phase two-level inverter. In addition, 
an input filter is used to mitigate the high-frequency 
components to make the input phase currents sinusoidal and 
to avoid over-voltages. The conventional CBM for IMCs, 
which was first introduced by Wang and Venkataramanan  

Input filter

Rectifier stage Inverter stage

3-phase load

A

B

C

ioA

ioB

ioCisc

vsc isb

vsb
isa

vsa

N

Sap

San

Sbp

Sbn

Scp

Scn

SAP

SAN

SBP

SBN

SCP

SCN
D

C
-link voltage

p

n

 
Fig. 1. Indirect matrix converter topology. 
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Fig. 2. Sector definition of input phase voltages. 

 
[9], is a decoupling modulation method for both the rectifier 
stage and the inverter stage. The carrier signal used for the 
rectifier stage is different from that of the inverter stage. The 
carrier signal usually uses a saw-tooth carrier signal for the 
rectifier stage, while an asymmetrical triangular signal with 
different slopes at the rising and falling edges is used for the 
inverter stage. Then, the PWM signals for all of the switches 
are generated by comparing the modulation signals with the 
high-frequency carrier signal. 

A. Rectifier Stage Modulation 
It is assumed that the input voltages are balanced 

three-phase sinusoidal voltage sources: 
cos( ) cos( )sa s s s av V t Vω θ= =           (1) 

cos( 2 3) cos( )sb s s s bv V t Vω π θ= − =         (2) 

cos( 2 3) cos( )sc s s s cv V t Vω π θ= + =         (3) 
where Vs is the amplitude and ωs is the angular frequency of 
the input phase voltage. 

Since the input voltages are balanced, there are two 
possible categories for the six sectors during one fundamental 
cycle of the input phase voltages, as shown in Fig. 2. In the 
first category, one input phase voltage is positive and two 
input phase voltages are negative (sectors 1, 3, and 5). In the 
second category, two input phase voltages are positive and 
one is negative (sectors 2, 4, and 6). In general, the control 
rules for all of the switches in each sector are as follows: the 
upper switch of the phase associated with a positive voltage is 
controlled to connect to the positive DC-bus p, while the 
lower switch of the phase associated with a negative voltage 
is controlled to connect to the negative DC-bus n. All of the 
other switches are kept in the OFF state. 

To explain the modulation technique, it is assumed that the 
IMC operates at a unity input power factor, and that the input  
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TABLE I 
SWITCHING STATES AND MODULATION SIGNALS FOR RECTIFIER 

STAGE 

Sector ON 
switch 

Modulated 
switches Modulation signals 

1 Sap Sbn Scn sb sav v−  sc sav v−  
2 Scn Sap Sbp sa scv v−  sb scv v−  

3 Sbp Scn San sc sbv v−  sa sbv v−  

4 San Sbp Scp sb sav v−  sc sav v−  

5 Scp San Sbn sa scv v−  sb scv v−  

6 Sbn Scp Sap sc sbv v−  sa sbv v−  
 

phase voltages are located in sector 1. In this sector, the input 
phase voltage vsa is positive, whereas the input phase 
voltages vsb and vsc are negative. Therefore, the upper switch 
of phase a, Sap, is ON, and the lower switches of phase b and 
phase c, Sbn and Scn, are modulated with the modulation 
signals given by: 

sb
bn

sa

vv
v
−

=  and sc
cn

sa

vv
v
−

=           (4) 

It is obvious that the two modulation signals are always a 
sum of unity. Hence, the conducting states of the two 
modulated switches complement each other in this sector. 
Table I summarizes the modulation signals and the switching 
states for all of the sectors. 

The average value of the DC-link voltage for each sector 
is: 

3
2cos( )

s
dc

in

VV
θ

=                 (5) 

where cos( ) max( cos( ) , cos( ) , cos( ) )in a b cθ θ θ θ= . 

Once the modulation signals are derived, the PWM signals 
for the switches are generated by comparing these modulation 
signals with a saw-tooth carrier signal, which is illustrated in 
Fig. 3. 

B. Inverter Stage Modulation 
In order to control the inverter stage, the conventional 

CBM methods for VSIs are adopted. However, in the IMC 
topology, the DC-link voltage generated by the rectifier stage 
is not constant. The average value of the DC-link voltage 
vacillates with a frequency that is six times the input voltage 
frequency. Therefore, the adoption of VSI modulation 
techniques should be modified to control the inverter stage of 
the IMC. 

At first, the reference modulation signals of the three 
output phases are given by: 

cos( )oref
oAref o

dc

V
v t

V
ω=              (6) 

cos( 2 3)oref
oBref o

dc

V
v t

V
ω π= −           (7) 

cos( 4 3)oref
oCref o

dc

V
v t

V
ω π= −           (8) 
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Fig. 3. Carrier-based modulation technique for the rectifier stage. 
 
where Voref  and ωo are the amplitude and angular frequency 
of the desired output phase voltages, respectively. 

It is well-known that a zero-sequence signal can be 
injected into the reference modulation signals to improve the 
performance of the CBM methods for VSIs and IMCs. The 
zero-sequence signal, which is usually called an offset 
voltage component, voffset, can be arbitrarily selected. A 
proper offset voltage selection will extend the voltage 
linearity range, improve the waveform quality, and reduce the 
switching losses significantly. Therefore, many researchers 
have investigated the offset voltage component with CBM 
methods [19]-[22]. 

The modified modulation signals of the inverter stage are 
as follows: 

oA oAref offsetv v v= +               (9) 

oB oBref offsetv v v= +              (10) 

oC oCref offsetv v v= +              (11) 

To obtain balanced output voltages and input currents in 
each carrier cycle, the switching events of the inverter stage 
should be synchronized with those of the rectifier stage. Fig. 
4 shows an example of the switching sequence of the inverter 
stage synchronized with the commutation in the rectifier 
stage. The falling and rising slopes of the carrier signal in the 
inverter stage are determined by the intervals T1 and T2, 
which are the switching intervals in the rectifier stage. Fig. 4 
also shows that the switching events in the rectifier stage 
always happen during the zero state of the inverter stage, i.e., 
the rectifier stage commutation takes place when the DC-link 
current is zero. As a result, the switching losses in the 
rectifier stage are naturally eliminated. 

C. Switching Losses Analysis 
The switching losses in PWM converters have been 

analyzed very well [14], [23]-[25]. In general, assuming that 
the current and voltage turn-on and turn-off characteristics of 
the switching devices are linear with respect to time, the 
switching losses Psw of a PWM converter are determined as 
follows: 
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Fig. 4. Carrier-based modulation technique for the inverter stage. 
 

( )sw sw sw on off swP v i T T f∝ +            (12) 

where vsw is the switched voltage, isw is the switched current, 
fsw is the switching frequency, and Ton and Toff are the turn-on 
and turn-off times of the switching devices, respectively. 

From Equation (12), the switching losses are reduced by 
reducing the switched voltage/current and switching frequency 
or by improving the characteristics of the switching devices, 
such as minimizing the turn-on/turn-off processes of the power 
semiconductor devices. As a simple solution, the switching 
losses can easily be reduced if the switched voltage is 
decreased at the switching instant. However, this solution 
attenuates the voltage modulation range. In PWM converters, a 
low switching frequency also results in reducing the switching 
losses. However, this solution diminishes the performance of 
the converters. Considering these factors, minimization of the 
switching current is a useful solution to reduce switching losses. 
For the IMC, because the switching losses of the rectifier stage 
are eliminated in a straightforward manner by commutating at 
the zero DC-link current, the total switching losses are 
consequently dependent on the switching sequence of the 
power switches in the inverter stage and are proportional to the 
output phase current magnitude at the switching instant. 

 

III. PROPOSED CARRIER-BASED MODULATION 
METHOD TO REDUCE SWITCHING LOSSES 

A. Discontinuous CBM Strategy 
CBM methods can be classified into two groups: 

continuous PWM (CPWM) and discontinuous PWM (DPWM) 
[20], [21]. In the CPWM methods, the magnitude of the 
modulation signals is always smaller than that of the carrier 
signal. As a result, the switching state changes between ON 
and OFF within each carrier cycle. Meanwhile, the 
modulation signals in the DPWM methods are saturated with 
the upper or lower boundaries of the carrier signal. Therefore, 
the switches associated with the saturation are kept ON or 
OFF during the carrier cycle and consequently the switching 
numbers are decreased. Therefore, the DPWM methods are 
widely used to reduce the switching losses in PWM 
converters. 
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Fig. 5. Switching sequences. (a) The DPWM-MAX method. (b) 
The DPWM-MIN method. 

 
PWM methods can be classified into three groups: 

sinusoidal PWM (SPWM), space vector PWM (SV-PWM), 
and the DPWM-MAX and DPWM-MIN methods according 
to the offset voltage value, voffset. 

With SPWM, the offset voltage is set at zero. 
With SV-PWM, the offset voltage is chosen as follows: 

2
max min

offset
v vv +

=               (13) 

where: 
1max omax

min omin

v v
v v

= −
 = −

             (14) 

and: 
max( , , )

min( , , )
omax oAref oBref oCref

omin oAref oBref oCref

v v v v

v v v v

=
 =

      (15) 

The DPWM-MAX and DPWM-MIN methods are realized 
with the switching sequences illustrated in Fig. 5(a) and Fig. 
5(b), respectively. Their offset voltages are as follows: 

offset maxv v=  and offset minv v=        (16) 

The distributions of the thermal stresses on the power 
switches in these methods are unbalanced because the 
conduction times of the upper switches and lower switches 
are different. As can be seen, the switching numbers of the 
DPWM methods in Fig. 5 are smaller than the switching  
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Fig. 6. The flow chart of the offset voltage selection algorithm. 
 

number of the SV-PWM in Fig. 4. However, the 
DPWM-MAX and DPWM-MIN methods cannot use the zero 
DC-link current commutation in the rectifier stage. 

On the other hand, in order to choose a phase to clamp the 
switches ON or OFF, most of the DPWM methods presented 
to reduce switching losses for the MC and the VSI [14]-[16], 
[23]-[25] need to know the output displacement angle before 
choosing a suitable offset voltage value. Thus, the offset 
voltage changes if the load condition changes. In order to 
overcome this problem, an effective CBM strategy is 
introduced with an additional algorithm to select an 
appropriate offset voltage, which is independent of the output 
displacement angle. 

B. Offset Voltage Selection 
In order to choose an offset voltage regardless of the load 

power factor, the offset voltage selection principle for a VSI 
[26] is applied to select the offset voltage for the modulation 
of the IMC inverter stage. The switching losses are reduced 
by adjusting the offset voltage to avoid commutation at the 
high magnitude of the output phase current. In this paper, an 
optimal voltage offset selection algorithm is proposed by 
considering the output phase current magnitude. 

First, the maximum and minimum values in Equation (15) 
are determined from the modulation signals in equations 
(6)-(8). Then χvmax and χvmin are defined so that they represent 
phases that have the maximum and minimum modulation 
signals, respectively: 

if

if
vmax oMref omax

vmin oNref omin

M   v = v

= N   v = v

χ

χ

=



         (17) 

where { }, , ,M N A B C= , one of three output phases. 
Second, the maximum and medium output current 

magnitudes are identified as follows: 

voAref

voA voffset1

0

-1
 

 

Fig. 7. The waveforms of the reference modulation signal, the 
offset voltage, and the modified modulation signal in the 
proposed CBM method. 

 

( )
( )

max , ,

mid , ,
omax oA oB oC

omid oA oB oC

i i i i

i i i i

 =


=
         (18) 

Then χ imax and χ imid are defined as the phases to conduct the 
maximum and medium output phase currents, respectively: 

if
if

imax oX omax

imid oY omid

X  i i
Y   i i

χ
χ

 = =
 = =

          (19) 

where { }, , ,X Y A B C= , one of three output phases. 
Fig. 6 shows how to select an optimal offset voltage that 

can reduce the switching losses. Fig. 7 illustrates the 
waveforms of the reference modulation signal, the offset 
voltage and the modified modulation signal of the proposed 
CBM strategy. 

C. Case Study 
In order to explain the principle of the proposed algorithm, 

two examples are introduced. First, it is assumed that the 
magnitudes of the three reference modulation signals are 
defined as oAref oBref oCrefv v v>> . In this case, the maximum 

and minimum allowable values of the offset voltage are given 
as vmax and vmin, as in Fig. 8(a). 

In the first case, the magnitudes of the three output phase 
currents are assumed to be oA oB oCi i i≥ ≥ , i.e., the largest 

current flows in phase A. In order to avoid maximum current 
commutation, the reference modulation signals are shifted 
with the maximum offset voltage, vmax, as shown in Fig. 8(b), 
to cease commutation in phase A. The modulation signal of 
phase A reaches the upper boundaries of the carrier signal, 
and the switching state of phase A is held. 

In the second case, with different load conditions, the 
magnitudes of the output phase currents are oB oC oAi i i≥ ≥ , 

i.e., the maximum and medium currents flow in phase B and 
phase C, respectively. In order to avoid commutation in phase 
B, the modulation signal of phase B should be moved to the 
upper boundary or moved down to the lower boundary of the 
carrier signal. However, if phase B is moved, the modulation 
signals of phase A or phase C leave the upper or lower 
boundary of the carrier signal, as shown in Fig. 8(a). 
Therefore, the offset voltage voffset is chosen as vmin to avoid 
commutation in phase C, which flows with the medium 
current, as shown in Fig. 8(c). 

As a result, an optimum offset voltage can be selected 
regardless of the load condition without any information  
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Fig. 8. Examples of the offset voltage selection. (a) Initial 
modulation signals and modified modulation signals when (b) 
voffset = vmax and (c) voffset = vmin in one cycle of the carrier signal. 

 
about the output displacement angle. As a result, the 
switching losses are reduced when compared to the previous 
switching methods. 

 

IV. SIMULATION RESULTS 
Simulations were carried out using PSIM 9.0 software in 

order to verify the effectiveness of the proposed CBM 
method. The system was simulated with the following 
parameters: 

 

1) Power supply (line-to-line voltage) is 122 V/60 Hz. 
2) Three-phase RL load has R = 20 Ω and L = 15 mH. 
3) Input filter parameters are L = 1.4 mH and C = 25 

µF. 
4) Output frequency fout is 50 Hz. 
5) Voltage transfer ratio q is 0.7. 
6) All of the switches in the IMC are ideal. 
7) Frequency of the saw-tooth carrier signal is 10 

kHz. 
 

In order to investigate the reduced switching losses, the 
Thermal Module in PSIM was used. In the simulation model, 
the SPA21N50C3 power switch, manufactured by Infineon, 
was used to implement the power circuits for both the 
rectifier and inverter stages with the following specifications: 
VDS,max = 560 [V], ID,max = 21 [A] and Tj,max = 150oC. The 
power switching losses are calculated under the same 
conditions according to different voltage transfer ratios and 
load power factor angles for the SV-PWM method, the  

 
Fig. 9. Power switching losses with different voltage transfer 
ratios. 
 

 
Fig. 10. Power switching losses with different load power factor 
angles. 

 
DPWM-MAX method, and the proposed CBM method. They 
are plotted in Fig. 9 and Fig. 10, respectively. The lowest 
power switching losses are achieved with the proposed CBM 
strategy. These figures validate the effectiveness of the 
proposed CBM strategy as a switching loss reduction 
technique. 

The DC-link voltage waveform of the proposed CBM 
method is shown in Fig. 11. It can be seen that the DC-link 
voltage is modulated between the two line-to-line input 
voltages. Its waveform is not affected by the inverter stage 
modulation and it does not decrease to zero because the zero 
states are not used in the rectifier stage. 

Figs. 12, 13, and 14 show the currents and voltages of the 
input and output sides with the SV-PWM method, the 
DPWM-MAX method and the proposed CBM method, 
respectively. From these results, it can be seen that the 
waveforms of the input currents and output currents are 
sinusoidal and balanced. The output line voltage performance 
of the proposed CBM method is similar to other methods. 

The output phase-to-neutral voltages with the SV-PWM 
method, the DPWM-MAX method and the proposed CBM 
method are shown in Fig. 15 (a), (b), and (c), respectively. As 
shown in Figs. 12 to 14, all of the methods have the same 
output line-to-line voltages. However, the waveforms of the 
output phase-to-neutral voltages in Fig. 15 are different from 
each other due to the different offset voltage values. 
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Fig. 11. DC-link voltage waveform. 
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Fig. 12. Simulation results. (a) Input voltage/current. (b) 
Three-phase output current. (c) Line-to-line output voltage. (d) 
FFT of line-to-line output voltage with the SV-PWM method. 
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Fig. 13. Simulation results. (a) Input voltage/current. (b) 
Three-phase output current. (c) Line-to-line output voltage. (d) 
FFT of line-to-line output voltage with the DPWM-MAX 
method. 
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Fig. 14. Simulation results. (a) Input voltage/current. (b) 
Three-phase output current. (c) Line-to-line output voltage. (d) 
FFT of line-to-line output voltage with the CBM method. 
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Fig. 15. Simulation results of phase-to-neutral output voltage. (a) 
With the SV-PWM method. (b) With the DPWM-MAX method. 
(c) With the proposed CBM method. 

 

V. EXPERIMENTAL RESULTS 
In order to validate both the proposed CBM strategy and 

the simulation results, an experimental setup was 
implemented in the laboratory. A block diagram of the 
experimental system, including a control board, measurement 
boards, IGBT driver boards, and a power circuit board, is 
shown in Fig. 16. The control board is designed with a 32-bit 
DSP TMS320F28335 with a clock speed of 150 MHz and a 
CPLD Altera EPM7128SLC84-15. The parameters used in 
the experiment are the same as those used in the simulation. 
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Fig. 16. Block diagram of the hardware configuration. 
 

Dc-link voltage 50V/div 2ms/div
 

 

Fig. 17. Experimental results of the DC-link voltage waveform. 
 

Input voltage/currents vsa, isa

50V/div, 2A/div, 5ms/div(a)

Output currents ioA, ioB, ioC
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Output line voltage voAB
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10V/div 10kHz/div

FFT of Output line voltage

(d)
 

 

Fig. 18. Experimental results. (a) Input voltage/current. (b) 
Three-phase output current. (c) Line-to-line output voltage. (d) 
FFT of line-to-line output voltage with the SV-PWM method. 
 

The experimental result shown in Fig. 17 is the DC-link 
voltage waveform. The DC-link voltage is switched to the 
maximum and medium line-to-line voltages in order to achieve 
the maximum average DC-link voltage. 

Figs. 18 to 20 show the experimental results of the currents 
and voltages of the rectifier stage and inverter stage with the 
SV-PWM method, the DPWM-MAX method and the proposed 
CBM method. As shown in these figures, the input phase 
current of the proposed CBM method is nearly sinusoidal. 
However, it contains a ripple, and there is a displacement angle  

Input voltage/currents vsa, isa

50V/div, 2A/div, 5ms/div(a)
Output currents ioA, ioB, ioC

2A/div, 5ms/div(b)

Output line voltage voAB

100V/div, 5ms/div(c)

10V/div 10kHz/div

FFT of Output line voltage

(d)
 

 

Fig. 19. Experimental results. (a) Input voltage/current. (b) 
Three-phase output current. (c) Line-to-line output voltage. (d) 
FFT of line-to-line output voltage with the DPWM-MAX 
method. 
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50V/div, 2A/div, 5ms/div(a)
Output currents ioA, ioB, ioC

2A/div, 5ms/div(b)

Output line voltage voAB

100V/div, 5ms/div(c)

10V/div 10kHz/div

FFT of Output line voltage

(d)
 

 

Fig. 20. Experimental results. (a) Input voltage/current. (b) 
Three-phase output current. (c) line-to-line output voltage, and (d) 
FFT of line-to-line output voltage with the proposed CBM 
method. 

 
between the input current and the voltage due to the LC input 
filter. The proposed CBM method does not consider the input 
power factor compensation. The output phase currents and line 
voltages of the three methods are the same. 
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Phase-to-neutral voltage vAN

50V/div, 5ms/div

(a)
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(c)
 

 

Fig. 21. Experimental results of line-to-neutral output voltage. (a) 
With the SV-PWM method. (b) With the DPWM-MAX method. 
(c) With the proposed CBM method. 

 

 
 

Fig. 22. Experimental results of system efficiency. 
 
The experimental results of the output phase-to-neutral 

voltage with the SV-PWM method, the DPWM-MAX 
method and the proposed CBM method are shown in Fig. 21 
(a), (b), and (c), respectively. From Fig. 21, even though the 
waveforms are slightly different due to the different offset 
voltage values, the experimental results are in complete 
agreement with the simulation results. 

In order to compare the efficiency of the proposed CBM 
method with those of the other methods, the input active 
power and output active power of the system are measured by 
using a HIOKI 3193 Power HiTester. The system efficiency 
of the three methods with different voltage transfer ratios are 
plotted in Fig. 22. The proposed CBM method has the highest 
efficiency due to the minimum switching losses, as shown in 
the simulation results. 
 

VI.  CONCLUSION 
This paper presented an effective CBM strategy for an 

IMC to reduce the switching losses and to increase efficiency. 
The proposed CBM strategy decreased the switching 

numbers by using the DPWM technique to cease the 
switching sequence of one output leg of the IMC during a 
carrier signal cycle. In order to reduce the amount of 
switching losses, this paper also introduces a way to select an 
optimum offset voltage component to avoid commutations of 
the high output phase currents. The proposed CBM strategy 
can be applied to reduce switching losses regardless of the 
voltage transfer ratio or the load condition of an IMC. 
Simulation and experimental results are provided to 
demonstrate the effectiveness of the proposed CBM strategy. 
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