• Title/Summary/Keyword: Power Requirement

Search Result 1,008, Processing Time 0.024 seconds

Analysis of Power Requirement of Agricultural Tractor by Major Field Operation (농업용 트랙터의 주요 농작업 소요동력 분석)

  • Kim, Yong-Joo;Chung, Sun-Ok;Park, Seung-Jae;Choi, Chang-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.2
    • /
    • pp.79-88
    • /
    • 2011
  • The purpose of this study was to analyze power requirement of an agricultural tractor by major field operations. First a survey was conducted to obtain annual usage ratio of agricultural tractor by field operation. Plowing, rotary tillage, and loader operations were selected as major field operations of agricultural tractor. Second, a power measurement system was constructed with strain-gauge sensors to measure torque of four driving axles and a PTO axle, speed sensors to measure rotational speed of the driving axles and an engine shaft, pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to calculate power requirement. Third, the major field operations were experimented under fields with different soil conditions following planned operation paths. Power requirement was analyzed during the total operation period consisted of actual operation period (plowing, rotary tillage, and loader operations) and period before and after the actual operation (3-point hitch operating, forward and reverse driving, braking, and steering). Power requirement of tractor major components such as driving axle part, PTO part, main hydraulic part, and auxiliary hydraulic part were measured and calculated to determine usage ratio of agricultural tractor power. Results of averaged power requirement for actual field operation and total operation were 23.1 and 17.5 kW, 24.6 and 19.1 kW, and 14.9 and 8.9 kW, respectively, for plowing, rotary tillage, and loader operations. The results showed that rotary tillage required the greatest power among the operations. Averaged power requirement of driving axles, PTO axle, main hydraulic part, and auxiliary part during the actual field operation were 8.1, 7.8, 3.4, and 1.5 kW, respectively, and the total requirement power was about 70 % (20.8 kW) of the rated power. Averaged power requirement of driving axles, PTO axle, main hydraulic, and auxiliary hydraulic for the total operation period were 6.5, 6.0, 2.1, 0.9 kW, respectively, and total requirement power was about 52 % (15.5 kW) of the rated power. Driving axles required the greatest amount of power among the components.

Study on Reserve Requirement for Wind Power Penetration based on the Cost/Reliability Analysis

  • Shin, Je-Seok;Kim, Jin-O;Bae, In-Su
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1397-1405
    • /
    • 2017
  • As the introduction of wind power is steadily increasing, negative effects of wind power become more important. To operate a power system more reliable, the system operator needs to recognize the maximum required capacity of available generators for a certain period. For recognizing the maximum capacity, this paper proposes a methodology to determine an optimal reserve requirement considering wind power, for the certain period in the mid-term perspective. As wind speed is predicted earlier, the difference of the forecasted and the actual wind speed becomes greater. All possible forecast errors should be considered in determining optimal reserve, and they are represented explicitly by the proposed matrix form in this paper. In addition, impacts of the generator failure are also analyzed using the matrix form. Through three main stages which are the scheduling, contingency and evaluation stages, costs associated with power generation, reserve procurement and the usage, and the reliability cost are calculated. The optimal reserve requirement is determined so as to minimize the sum of these costs based on the cost/reliability analysis. In case study, it is performed to analyze the impact of wind power penetration on the reserve requirement, and how major factors affect it.

Tilling Load Characteristics and Power Requirement for Rotary Tillers (로우터리 경운(耕耘)의 부하특성(負荷特性) 및 소요동력(所要動力)에 관(関)한 연구(硏究))

  • Choi, Kyu Hong;Ryu, Kwan Hee
    • Journal of Biosystems Engineering
    • /
    • v.9 no.2
    • /
    • pp.27-36
    • /
    • 1984
  • This study was carried out to investigate the effects of the tilling depth, tilling travel speed and soil shear stress on the tilling load characteristics and power requirement for rotary tillers. The results obtained from the study are summarized as follows. 1. The average and maximum PTO torque increased as the tilling depth, tilling pitch and soil shear stress increased. A multiple linear regression equation to estimate the average PTO torque in terms of the above parameters was developed. 2. The ratios of maximum PTO torque to the average torque were in the range of 1.17 to 1.65 for the various tilling conditions tested. The variation in PTO torque increased greatly as the tilling pitch and soil shear stress increased, but decreased as the tilling depth increased. 3. Power requirement for the PTO shaft increased with the tilling depth, travel speed and soil shear stress, but decreased slightly as the tilling pitch increased. A multiple linear regression equation to estimate power requirement for the PTO shaft in terms of the above parameters was developed. 4. The specific power requirement for the rotary tiller was in the range of $0.008-0.015ps/cm^2$ for the various tilling conditons tested. The specific tilling capacity decreased as the tilling depth and soil shear stress increased, but increased with the tilling pitch. A multiple linear regression equation to estimate the specific tilling capacity in terms of the above parameters was developed.

  • PDF

Analysis of power requirement of the underground crop harvester attached on agricultural tractor during traction operation (트랙터 부착형 땅속작물 수확기의 견인 작업시 소요동력 분석)

  • Jang, Jeong-Hoon;Kim, Wan-Soo;Choi, Chang-Hyeon;Park, Seong-Un;Kim, Yong-Joo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.2
    • /
    • pp.150-155
    • /
    • 2018
  • In Korea, the mechanization ratio of field farming is about 58.3%. Especially, mechanization ratio of harvest operation is 10% or less. So, it is required to improve the mechanization ratio of harvest operation to analyze the power requirement analysis of agricultural tractor. The purpose of this study is to analyze power requirement of the underground crop harvester attached on agricultural tractor for traction operation. First, a power measurement system was developed and installed in 45 kW agricultural tractor. Second, field experiments were conducted at two driving speed levels (1.41, 2.17 km/h), and axle torque and rotation speed were analyzed. At 1.41km/h driving speed, the average power requirement of driving axle is 3.13 kW, respectively, at 2.17km/h driving speed, the average power requirement of driving axle is each 4.20 kW. In addition, the field tests show that as the driving speed increases by 53%, the power requirement of the underground crop harvester attached on agricultural tractor increases by 34%. Therefore, it indicated that the power requirement of agricultural tractor was affected by the driving speed.

Analysis of Power Requirement of Agricultural Tractor during Baler Operation (베일러 작업 시 트랙터 소요동력 분석)

  • Kim, Yong-Joo;Lee, Dae-Hyun;Chung, Sun-Ok;Park, Seung-Jae;Choi, Chang-Hyun
    • Journal of Biosystems Engineering
    • /
    • v.36 no.4
    • /
    • pp.243-251
    • /
    • 2011
  • Purpose of this study was to analyze power requirement of an agricultural tractor for baler operation. First, a power measurement system was developed and installed in a 75 kW agricultural tractor. Strain-gages with a telemetry system were used to measure torques of transmission and PTO input shafts. An engine tachometer was used to measure rotational speed of transmission and PTO input shafts. The measurement system also included pressure sensors to measure pressure of hydraulic pumps, an I/O interface to acquire the sensor signals, and an embedded system to determine power requirements. Second, field experiments were conducted at two PTO speed levels, and proportion of utilization ratio of rated engine power and power consumption of major parts (transmission input shaft, PTO input shaft, main hydraulic pump, and auxiliary hydraulic pump) were analyzed. Results of usage proportion of engine power for PTO speed level 1 and 2 were 4.1 and 2.2%, 31.5 and 16.3%, 49.6 and 59.7%, 14.4 and 20.8%, and 0.4 and 1.0%, respectively, for ratio of measured engine power to rated engine power of less than 25%, 25 ~ 50%, 50 ~ 75%, 75 ~ 100%, and greater than 100%. The results showed that the usage proportion increased in the range with the ratio of power requirement to rated engine power of over than 50% when the PTO gear was shifted from P1 to P2. Averaged engine power requirement for baling operation, tying and discharging operation, and total operation were 43.3, 37.3, and 42.0 kW and 49.0, 37.0, and 47.4 kW, respectively, for PTO speed level 1 and 2. Paired t-test showed significant difference in power consumption of engine, transmission input shaft, and PTO input shaft for different PTO speed levels. Therefore, the power consumption of engine for baler operation increased when the PTO gear was shifted from P1 to P2. It was indicated that the power requirement of tractor was affected by the PTO rotational speed for baler operation.

Prediction of Power and Efficiency Requirement of Motor/generator for 500W Class Micro Gas Turbine Generator Considering Losses (손실을 고려한 500W급 마이크로 가스터빈 발전기용 전동발전기의 요구동력 및 요구효율 선정)

  • Park, Cheol-Hoon;Choi, Sang-Kyu;Ham, Sang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.5
    • /
    • pp.24-30
    • /
    • 2011
  • 500W class MTG(Micro turbine generator) operating at 400,000 rpm is under development. From the cycle analysis, it is decided that the self-sustaining speed of MTG is 200,000rpm and the generating speed is 400,000 rpm. Therefore, motor should be designed so that it is able to rotate the rotor up to 200,000rpm and generator should designed so that it is able to generate 500W output at 400,000rpm. First step to design motor/generator is to determine the power and efficiency requirement. Not only the power into the compressor and from the turbine at the operating speed but also the mechanical and electrical losses should be considered in determining the power and efficiency requirement. This study presents the procedure and the results of determining the power and efficiency requirement considering the mechanical and electrical losses depending on the rotating speed which is measured from the experiment.

Development of Rotary for Reducing Power Requirement at a Farm Tractor Rotary Tilling - Development of device for preventing alien substance from being wound and for preventing soil adherence - (소요동력 절감을 위한 트랙터 로터리의 개발 - 이물질 감김방지 및 흙부착방지 장치 -)

  • 이현동;김기대;오종진;김찬수;김성환;나건영
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.295-304
    • /
    • 2003
  • In this study, a rotary equipped with devices for preventing alien substance from being wound and for preventing soil adherence were developed and their performances are evaluated in the field. The former device was effective in the paddy field with low moisture content, but power requirement of rotary tilling was increased in the field with high moisture content. In the field test of rotaries equipped with device to prevent the power requirements were measured to be 52.18, 52.44, 49.01 and 46.34 PS for general, stainless steel, rubber and PE rotaries, and the quantities of the soil adhered to rotaries, on the average, were to be 5.6, 5.7, 3.1 and 2.7 kg for general, stainless steel, rubber and PE rotaries, respectively. The PE rotary cover reduced the power requirement and soil adherence by 11 and 52%, respectively.

Ancillary Service Requirement Assessment Indices for the Load Frequency Control in a Restructured Power System with Redox Flow Batteries

  • Chandrasekar, K.;Paramasivam, B.;Chidambaram, I.A.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1535-1547
    • /
    • 2016
  • This paper proposes various design procedures for computing Power System Ancillary Service Requirement Assessment Indices (PSASRAI) for a Two-Area Thermal Reheat Interconnected Power System (TATRIPS) in a restructured environment. In an interconnected power system, a sudden load perturbation in any area causes the deviation of frequencies of all the areas and also in the tie-line powers. This has to be corrected to ensure the generation and distribution of electric power companies to ensure good quality. A simple Proportional and Integral (PI) controllers have wide usages in controlling the Load Frequency Control (LFC) problems. So the design of the PI controller gains for the restructured power system are obtained using Bacterial Foraging Optimization (BFO) algorithm. From the simulation results, the PSASRAI are calculated based on the settling time and peak over shoot concept of control input deviations of each area for different possible transactions. These Indices are useful for system operator to prepare the power system restoration plans. Moreover, the LFC loop coordinated with Redox Flow Batteries (RFB) has greatly improved the dynamic response and it reduces the control input requirements and to ensure improved PSASRAI, thereby improving the system reliability.

Fundamental Study on Oscillating Tillage (II) -Acting Horizontal Vibration on the Triple Tillage Blade- (진동경운(振動耕耘)에 관(関)한 기초연구(基礎硏究)(II) -3날 경운기구(耕耘機構)에 수평진동(水平振動)을 가(加)했을 경우(境遇)-)

  • Kim, Yong Hwan;Kim, Sung Tae
    • Journal of Biosystems Engineering
    • /
    • v.8 no.2
    • /
    • pp.1-10
    • /
    • 1983
  • The resulting characteristics of vibrations show different patterns for the various oscillating mechanisms. These vibrations causes troublesome operation problems for the operators and sometimes for the machines. Furthermore, in some cases the practical usage of this oscillating mechanism is constrained by its mechanical conditions. In this study, a balanced oscillating tillage tool with triple blades having different acting area was designed. The horizontal and vertical oscillating accelerations and draft power requirement due to the various travel speeds, lift angles, amplitudes and oscillating frequencies were investigated in a laboratory soil bin with a soil having invariable properties. The results obtained are summarized as follows: 1. Overall, the horizontal acceleration decreased as the oscillating frequency and amplitude decreased. But the increase in travel speed caused the decrease horizontal acceleration. The blade with the lift angle of $30^{\circ}$ exhibited the lowest value of horizontal acceleration among the blades tested. 2. For the vertical acceleration, the fluctuating trend of oscillating acceleration was similar to the trend of the horizontal acceleration. 3. The draft power requirement decreased as the amplitude and oscillating frequency increased. But the increase in travel speed caused the increase in draft power requirement. The blade with the lift angle of $10^{\circ}$ showed the lowest value of draft power requirement among the blades tested.

  • PDF

Motion Analysis of Conventional Rotary Blades (기존 트랙터 로터리날의 운동분석)

  • Lee, Hyun-Dong;Kim, Ki-Dae;Kim, Chan-Soo;Kim, Sung-Hwan
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.1
    • /
    • pp.26-34
    • /
    • 2004
  • In this study, motion characteristics and power requirement of rotary tilling according to shape of conventional rotary blade were measured. This study was performed to establish factors which needed to develop energy saving rotary blade. Starting point of edged curve of imported rotary blade was faster than that of domestic rotary blade after measuring and analyzing edged curve of rotary blade. So domestic rotary blade tills much soil than imported rotary blade. In analyzing motion of rotary blade, Rotary blade of A, D type was begun to contact at part 3. Analyzing back surface of rotary blade which contact to soil at critical $\lambda$ results in contacting at e-f part. In measuring power requirement of rotary blade, specific torque and specific work of rotary blade are $160{\sim}170kgf{\cdot}m/m^2$, $3,700kgf{\cdot}m/m^3$. It shows power requirement of rotary blade according to shape of rotary blade are very different.

  • PDF