• Title/Summary/Keyword: Power Regulator

Search Result 497, Processing Time 0.022 seconds

Compensation of Neutral Point Deviation under Generalized 3-Phase Imbalance in 3-level NPC

  • Jung, Kyungsub;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1866-1878
    • /
    • 2018
  • This paper presents a neutral point deviation and ripple compensation control method for application to 3-level NPC converters. The neutral point deviation and its harmonic components are analyzed with a focus on the average current flowing through the neutral point of the dc-link. This paper also proposes a control scheme to compensate for the neutral point deviation and dominant harmonic components under generalized unbalanced grid operating conditions. The positive and negative sequence components of the pole voltages and ac input currents are employed to accurately explain the behavior of 3-level NPC converters. Simulation and experimental results are presented to verify the validity of the proposed method.

A Solid State Controller for Self-Excited Induction Generator for Voltage Regulation, Harmonic Compensation and Load Balancing

  • Singh Bhim;Murthy S. S.;Gupta Sushma
    • Journal of Power Electronics
    • /
    • v.5 no.2
    • /
    • pp.109-119
    • /
    • 2005
  • This paper deals with the performance analysis of static compensator (STATCOM) based voltage regulator for self­excited induction generators (SEIGs) supplying balanced/unbalanced and linear/ non-linear loads. In practice, most of the loads are linear. But the presence of non-linear loads in some applications injects harmonics into the generating system. Because an SEIG is a weak isolated system, these harmonics have a great effect on its performance. Additionally, SEIG's offer poor voltage regulation and require an adjustable reactive power source to maintain a constant terminal voltage under a varying load. A three-phase insulated gate bipolar transistor (IGBT) based current controlled voltage source inverter (CC- VSI) known as STATCOM is used for harmonic elimination. It also provides the required reactive power an SEIG needs to maintain a constant terminal voltage under varying loads. A dynamic model of an SEIG-STATCOM system with the ability to simulate varying loads has been developed using a stationary d-q axes reference frame. This enables us to predict the behavior of the system under transient conditions. The simulated results show that by using a STATCOM based voltage regulator the SEIG terminal voltage can be maintained constant and free from harmonics under linear/non linear and balanced/unbalanced loads.

A Simultaneous Perturbation Stochastic Approximation (SPSA)-Based Model Approximation and its Application for Power System Stabilizers

  • Ko, Hee-Sang;Lee, Kwang-Y.;Kim, Ho-Chan
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.506-514
    • /
    • 2008
  • This paper presents an intelligent model; named as free model, approach for a closed-loop system identification using input and output data and its application to design a power system stabilizer (PSS). The free model concept is introduced as an alternative intelligent system technique to design a controller for such dynamic system, which is complex, difficult to know, or unknown, with input and output data only, and it does not require the detail knowledge of mathematical model for the system. In the free model, the data used has incremental forms using backward difference operators. The parameters of the free model can be obtained by simultaneous perturbation stochastic approximation (SPSA) method. A linear transformation is introduced to convert the free model into a linear model so that a conventional linear controller design method can be applied. In this paper, the feasibility of the proposed method is demonstrated in a one-machine infinite bus power system. The linear quadratic regulator (LQR) method is applied to the free model to design a PSS for the system, and compared with the conventional PSS. The proposed SPSA-based LQR controller is robust in different loading conditions and system failures such as the outage of a major transmission line or a three phase to ground fault which causes the change of the system structure.

Design and Application of Gas Turbine Automatic Voltage Regulator for Jeju Gas Turbine Power Plant (제주화력 가스터빈 자동전압 조정기 설계 및 응용)

  • Ryu, Ho-Seon;Lee, Joo-Hyun
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.565-567
    • /
    • 2008
  • 가스터빈용 자동전압조정기는 발전기 출력 전압을 측정하여 발전기 단자 전압과 계자 전류를 제어하며, 발전기 여자시스템 보호/제한 기능을 수행한다. 본 논문에서는 전력연구원이 개발한 가스터빈 자동전압조정기의 시작품에 대한 소프트웨어와 하드웨어에 설계 및 제주화력 가스터빈에 현장 적용한 결과를 상세히 기술하였다.

  • PDF

Development of Dynamic Simulation Algorithm of UPFC (UPFC의 동적 시뮬레이션 알고리즘 개발)

  • Son, K.M.;Kim, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.226-228
    • /
    • 1999
  • This paper presents a dynamic simulation algorithm for studying the effect of Unified Power Flow Controller(UPFC) on the low frequency power system oscillations and transient stability studies. The algorithm is a Newton-type one and gives a fast convergence characteristics. The algorithm is applied to inter-area power oscillation damping regulator design of a sample two-area power system. The results show that UPFC is very effective for damping inter-area oscillations.

  • PDF

Active/Reactive Compound Compensation in Distribution System

  • Sul, Yong-Tae
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.4
    • /
    • pp.46-52
    • /
    • 1997
  • In this paper th use of compensation based on a combination of active plus reactive power at distribution model system is proposed. The basic voltage-power relationships for the linearized case on an infinite bus are used and the compensation angle is defined based on the voltage magnitude response to small power injection. Compensation is supplied at several locations, and the system is subjected to varying fault scenarios, with its response observed under different system conditions. As number of control issues for a storage-based active/reactive power compensator as a bus voltage regulator are explored to compare the effectiveness of active/reactive again reactive-only compensation.

  • PDF

Development of Current Control System Appropriate to a Big-Capacity LED Lamp using Microprocessor (마이크로 프로세서를 이용한 대용량 LED 등기구에 적합한 전류제어 시스템 개발)

  • Park, InKyoo;Lee, WanBum
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.191-198
    • /
    • 2015
  • The purpose of this study is to develope a current variation control system appropriate to the various LED(Light Emitting Diode) lamps using current control system equipped with microcontroller based voltage regulator of power driving circuit. For this, we will suggest a stable control system of current variation to enable a stable power-supply and current-control, consisting of circuit to minimize the affects on the LED forward voltage using variable resistance and compensating resistance. The method of constant current circuit and energy savings using microcontroller based voltage regulator suggested in this study can be applied to various a big capacity LED lamp to minimize the unnecessay heat generation and to control resistace delicately. Ultimately, we expect the results of this study will upgrade the reliability of LED lamp by supplying the current stably.

Critical Conduction Mode BOOST Type Solar Array Regulator (임계모드 부스트형 태양전력 조절기)

  • Yang, JeongHwan;Ryu, SangBurm;Yun, SeokTeak
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.86-90
    • /
    • 2014
  • A DC-DC Converter operates in CCM(Continuous Coundcution Mode), DCM(Discontinuous Conduction Mode), CRM(Critical Conduction Mode). The CRM is boundary between CCM and DCM. If a DC-DC converter is designed to operate in CRM, its inductor volume can decrease and power loss which caused by switch and diode can decrease. In this paper, the DC-DC converter which operates in CRM is applied to a solar array regulator(SAR) for the satellite. The switching frequency of the CRM boost SAR changes according to input and output condition. The switching frequency limit logic is applied to limit the maximum switching frequency. Meanwhile, the small signal transfer function of the CRM boost SAR is simple, so the controller design is also simple. In this paper, the small signal transfer function from control reference to solar array voltage is induced. And the voltage controller is designed based on the small signal transfer function. Finally, the CRM boost SAR is verified by simulation.

A Study on the Efficiency Improvement Method of Photovoltaic System Using DC-DC Voltage Regulator (DC-DC 전압 레귤레이터를 이용한 태양광전원의 효율향상 방안에 관한 연구)

  • Tae, Donghyun;Park, Jaebum;Kim, Miyoung;Choi, Sungsik;Kim, Chanhyeok;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.704-712
    • /
    • 2016
  • Recently, the installation of photovoltaic (PV) systems has been increasing due to the worldwide interest in eco-friendly and infinitely abundant solar energy. However, the output power of PV systems is highly influenced by the surrounding environment. For instance, a string of PV systems composed of modules in series may become inoperable under cloudy conditions or when in the shade of a building. In other words, under these conditions, the existing control method of PV systems does not allow the string to be operated in the normal way, because its output voltage is lower than the operating range of the grid connected inverter. In order to overcome this problem, we propose a new control method using a DC-DC voltage regulator which can compensate for the voltage of each string in the PV system. Also, based on the PSIM S/W, we model the DC-DC voltage regulator with constant voltage control & MPPT (Maximum Power Point Tracking) control functions and 3-Phase grid connected inverter with PLL (Phase-Locked Loop) control function. From the simulation results, it is confirmed that the present control method can improve the operating efficiency of PV systems by compensating for the fluctuation of the voltage of the strings caused by the surrounding conditions.