• 제목/요약/키워드: Power Regulating

검색결과 155건 처리시간 0.023초

PWM전압형 콘버어터에 의한 정지형 무효전력 보상장치 (Static VAR Compensator Using PWM Voltage type Converter)

  • 정연택;이훈구;황락훈
    • 대한전기학회논문지
    • /
    • 제39권8호
    • /
    • pp.836-846
    • /
    • 1990
  • This paper presents a Static Var Compensator (SVC) system compensating the reactive power for power system, which consists of a voltage type Pulse Width Modulation (PWM) converter and a reactance linking the converter to the source. The system drives the four quadrant modes. The system determines the magnitude of the input voltage, and then compares it with the magnitude of the source voltage by regulating the phase of the SVC about the source. Therefore, the system generates leading compensation currents when the input voltage is larger than the source in magnitude, and lagging compensation currents for smaller input voltage. Reactive power about voluntary load in power system is smoothly compensated by those compensation currents, and also power factor of source is improved. Furthermore, the SVC system using PWM method may improve the source current waveforms by eliminating the 5th and 7th harmonic components from the input voltages.

  • PDF

A Simple Power Management Scheme with Enhanced Stability for a Solar PV/Wind/Fuel Cell Fed Standalone Hybrid Power Supply using Embedded and Neural Network Controller

  • Thangavel, S.;Saravanan, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1454-1470
    • /
    • 2014
  • This paper propose a new power conditioner topology with intelligent power management controller that integrates multiple renewable energy sources such as solar energy, wind energy and fuel cell energy with battery backup to make best use of their operating characteristics and obtain better reliability than that could be obtained by single renewable energy based power supply. The proposed embedded controller is programmed for maintaining a constant voltage at PCC, maximum power point tracking for solar PV panel and WTG and power flow control by regulating the reference currents of the controller on instantaneous basis based on the power delivered by the sources and load demand. Instantaneous variation in reference currents of the controller enhances the controller response as it accommodates the effect of continuously varying solar insolation and wind speed in the power management. The power conditioner uses a battery bank with embedded controller based online SOC estimation and battery charging system to suitably sink or source the input power based on the load demand. The simulation results of the proposed power management system for a standalone solar/WTG/fuel cell fed hybrid power supply with real time solar radiation and wind velocity data collected from solar centre, KEC for a sporadically varying load demand is presented in this paper and the results are encouraging in reliability and stability perspective.

전류형 능동필터를 위한 델타변조제어기법의 디지탈 구현 (Digital Implementation of Delta Modulation Technique for Current-Fed Active Power Filters)

  • 강병희;황종규;고재석;목형수;최규하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.400-402
    • /
    • 1994
  • This paper presents a digital implementation of delta modulation Technique for Active Power Filters. Delta modulated scheme is to control the harmonic-compensating current indirectly by adjusting the capacitor voltage to be sinusoidal. The overall control system has two feedback loops. One is the outer propotional feedback for loop regulating the dc current of active filters and the other is the inner feedback loop for maintaining the ac current waveform to be sinusoidal, and have zero power factor angle(i.e. unity power factor). The characteristics of the proposed is investigated by digital simulation using ACSL and experimental results are obtained by TMS370C756 Single-Chip Microprocessor relative to analog delta modulation technique.

  • PDF

자동발전제어(AGC) 최적튜닝에 관한 연구 (Optimal AGC Control Parameter Tuning)

  • 오창수;송석하;이운희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.321-322
    • /
    • 2008
  • 주파수는 발전기 조속기와 전적거래소 EMS AGC의 협조제어 체계가 적절하여야 안정적인 운영이 가능하며, 과다한 주파수 조정은 경제급전을 저해함은 물론 발전기의 수명단축을 초래하기 때문에 AGC 최적튜닝은 필수적이다. 본 논문에서는 '07년도에 거래소 계통운영처에서 수행한 AGC 제어파라미터 튜닝기법 및 효과에 대해 논하고 있으며, 학계는 물론 동종업계에 AGC 관련 기술개발시 업무추진에 도움이 되었으면 한다.

  • PDF

RTDS(Real Time Digital Simulator)를 이용한 UPFC(Unified Power Flow Controller) 모델링 (UPFC Modelling on RTDS)

  • 김광수;이상중
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2001년도 학술대회논문집
    • /
    • pp.47-50
    • /
    • 2001
  • In order for effective operation of existing power systems, introduction of the so-called FACTS(Flexible AC Transmission System) such as SVC and UPFC etc, is unavoidable. The UPFC(Unified Power Flow Controller) is composed of STATCOM(Static Compensator) and SSSC(Static Synchronous Series Compensator), and is used to control the magnitude and phase angle of injected sources which are connected bothin series and in parallel with the transmission line to control the power flow and bus voltages. This paper presents a UPFC simulation on RTDS. The voltage and phase angle of a system have been analyzed by regulating the firing angle inside the UPFC.

  • PDF

직류 마이크로그리드에서 펄스형 부하 보상용 슈퍼커패시터 무순단 제어법 (A Seamless Control Method for Supercapacitor to Compensate Pulsed Load in DC Microgrid)

  • 담두이헝;이홍희
    • 전력전자학회논문지
    • /
    • 제23권4호
    • /
    • pp.265-272
    • /
    • 2018
  • This paper proposes a new control method for the supercapacitor (SC) to compensate the pulsed load and to enhance the power quality of the DC microgrid. By coordinating the operating frequency, the SC is controlled to handle the surge current, while the low-frequency current component is dealt with by the remaining sources in the system. The operation mode of the SC unit is automatically changed based on the state of charge and DC bus voltage level. Meanwhile, the mismatch in the power demand is covered by the SC unit by regulating the DC bus voltage level. The effectiveness of the proposed method is verified experimentally by the prototype with two distributed generators and one SC unit.

A Seamless Control Method for Supercapacitor to Compensate Pulse Load Transients in DC Microgrid

  • Dam, Duy-Hung;Lee, Hong-Hee
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2017년도 전력전자학술대회
    • /
    • pp.198-199
    • /
    • 2017
  • This paper proposed a new control method for supercapacitor (SC) to compensate the pulse load transient and enhance the power quality of dc microgrid. By coordinating the operation frequency, the supercapacitor is controlled to handle the surge current component while the low-frequency current component is dealt with by remaining sources in the system. Based on the state of charge and dc bus voltage level, the SC unit operation mode is automatically decided. Meanwhile, the dc bus voltage level indicates the power demand of the whole system; by regulating the dc bus voltage, the mismatch of power demand is covered by SC unit. The effectiveness of proposed method is verified by experiment prototype formed by two distributed generation and one supercapacitor unit.

  • PDF

제주계통의 전압조정을 위한 MMC-HVDC 시스템 응용 (Application of MMC-HVDC System for Regulating Grid Voltage Based on Jeju Island Power System)

  • 왓나우덩;김일환;이도헌;김호찬
    • 전력전자학회논문지
    • /
    • 제19권6호
    • /
    • pp.494-502
    • /
    • 2014
  • This paper presents a control method of the modular multilevel converter - high-voltage direct current (MMC-HVDC) system to regulate grid voltage on the basis of the Jeju Island power system. In this case, the MMC-HVDC system is controlled as a static synchronous compensator (Statcom) to exchange the reactive power with the power grid. The operation of the MMC-HVDC system is verified by using the PSCAD/EMTDC simulation program. The Jeju Island power system is first established on the basis of the parameters and measured data from the real Jeju Island power system. This power system consists of two line-commutated converter - high-voltage direct current (LCC-HVDC) systems, two Statcom systems, wind farms, thermal power plants, transformers, and transmission and distribution lines. The proposed control method is then applied by replacing one LCC-HVDC system with a MMC-HVDC system. Simulation results with and without using the MMC-HVDC system are compared to evaluate the effectiveness of the control method.

자계 공진 방식의 무선전력전송 장치를 이용한 교류 전력 직접 인가에 의한 LED 조명기기 효율에 관한 연구 (A Study on the Efficiency of LED Lighting Applied by Direct AC Power Using Magnetic Resonance Wireless Power Transfer System)

  • 박정흠
    • 조명전기설비학회논문지
    • /
    • 제27권10호
    • /
    • pp.15-20
    • /
    • 2013
  • In this paper, wireless power transfer system using the magnetic resonance was designed and applied to LED lighting for implementation of wireless lighting. This lighting was made by the converted DC driving type and the direct AC driving type. In the former, transferred AC power was rectified into DC and regulated to the specified voltage value, which leads to produce the loss at the rectifying and regulating circuit. In the latter, wireless-transferred AC power was directly applied to LED, which get rid of the loss derived from the additional circuit. For the efficiency-comparison between the former and the latter, the power at each stage was measured when the same optical output radiated from LED lighting part. The result revealed that the direct AC driving type had 18% higher efficiency than the DC driving type and confirmed that LED lighting using magnetic resonance wireless power transfer system can be efficient by direct AC power supply. And the direct AC driving type had the simple circuit structure and the simple LED lighting formation, so this can leads to various application.

Multi-Function Distributed Generation with Active Power Filter and Reactive Power Compensator

  • Huang, Shengli;Luo, Jianguo
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1855-1865
    • /
    • 2018
  • This paper presents a control strategy for voltage-controlled multi-function distributed generation (DG) combined with an active power filter (APF) and a reactive power compensator. The control strategy is based on droop control. As a result of local nonlinear loads, the voltages of the point of common coupling (PCC) and the currents injecting into the grid by the DG are distorted. The power quality of the PCC voltage can be enhanced by using PCC harmonic compensation. In addition, with the PCC harmonic compensation, the DG offers a low-impedance path for harmonic currents. Therefore, the DG absorbs most of the harmonic currents generated by local loads, and the total harmonic distortion (THD) of the grid connected current is dramatically reduced. Furthermore, by regulating the reactive power of the DG, the magnitude of the PCC voltage can be maintained at its nominal value. The performance of the DG with the proposed control strategy is analyzed by bode diagrams. Finally, simulation and experimental results verify the proposed control strategy.