• Title/Summary/Keyword: Power Plant Park

Search Result 1,381, Processing Time 0.03 seconds

THINNED PIPE MANAGEMENT PROGRAM OF KOREAN NUCLEAR POWER PLANTS

  • Lee, S.H.;Lee, Y.S.;Park, S.K.;Lee, J.G.
    • Corrosion Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2015
  • Local wall thinning and integrity degradation caused by several mechanisms, such as flow accelerated corrosion (FAC), cavitation, flashing and/or liquid drop impingements, are a main concern in carbon steel piping systems of nuclear power plant in terms of safety and operability. Thinned pipe management program (TPMP) had been developed and optimized to reduce the possibility of unplanned shutdown and/or power reduction due to pipe failure caused by wall thinning in the secondary side piping system. This program also consists of several technical elements such as prediction of wear rate for each component, prioritization of components for inspection, thickness measurement, calculation of actual wear and wear rate for each component. Decision making is associated with replacement or continuous service for thinned pipe components. Establishment of long-term strategy based on diagnosis of plant condition regarding overall wall thinning is also essential part of the program. Prediction models of wall thinning caused by FAC had been established for 24 operating nuclear plants. Long term strategies to manage the thinned pipe component were prepared and applied to each unit, which was reflecting plant specific design, operation, and inspection history, so that the structural integrity of piping system can be maintained. An alternative integrity assessment criterion and a computer program for thinned piping items were developed for the first time in the world, which was directly applicable to the secondary piping system of nuclear power plant. The thinned pipe management program is applied to all domestic nuclear power plants as a standard procedure form so that it contributes to preventing an accident caused by FAC.

Protection Performance Simulation of Coal Tar-Coated Pipes Buried in a Domestic Nuclear Power Plant Using Cathodic Protection and FEM Method (국내원전에 매설된 콜타르 코팅 배관의 음극방식과 FEM법을 이용한 방식성능 시뮬레이션)

  • Chang, H.Y.;Kim, K.T.;Lim, B.T.;Kim, K.S.;Kim, J.W.;Park, H.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.16 no.3
    • /
    • pp.115-127
    • /
    • 2017
  • Coal tar-coated pipes buried in a domestic nuclear power plant have operated under the cathodic protection. This work conducted the simulation of the coating performance of these pipes using a FEM method. The pipes, being ductile cast iron have been suffered under considerably high cathodic protection condition beyond the appropriate condition. However, cathodic potential measured at the site revealed non-protected status. Converting from 3D CAD data of the power plant to appropriate type for a FEM simulation was conducted and cathodic potential under the applied voltage and current was calculated using primary and secondary current distribution and physical conditions. FEM simulation for coal tar-coated pipe without defects revealed over-protection condition if the pipes were well-coated. However, the simulation for coal tar-coated pipes with many defects predict that the coated pipes may be severely degraded. Therefore, for high risk pipes, direct examination and repair or renewal of pipes are strongly recommended.

A Selection Model For Power Plant Project Delivery Method (화력발전소 발주방식 비교를 통한 적정 발주방식 선정 모형)

  • Kim, Sun-Kuk;Park, Jong-Kyoo;Park, Chan-Sik;Son, Ki-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.8 no.1 s.35
    • /
    • pp.66-77
    • /
    • 2007
  • With the electricity industry structure reformation of the government in April, 2001, Korea Power Electric Corporation was divided in to Korea water power nuclear power and 5 thermal power plant. After, various delivery method is introduced and applied for active profit creation according to the competition between each development companies for the public company privatization. However, the current situation does not satisfy the project participant by selecting the delivery method without reflecting the business goal and project characteristics of power plant construction business. The objective of this study is to research the influencing factors that should be considered to select the delivery method in thermal power construction business and develop a standard of selection of appropriate delivery method through questionnaire and interviews to establish a model to select the delivery method that fits the business goal of the subject of delivery. In the future, if the delivery method selection model suggested in this study is applied, it is expected to select the appropriate delivery method of power plant construction business by effectively reflecting the business goal, characteristics and demand of the delivery subject, and characteristics of the construction business apart from the existing customary practices that decided the delivery method dependent on the subjective and experience based judgement.

Development of ISI UT Auto Flaw Evaluation and Acceptance Module of Nuclear Power Plants (원전 ISI UT 자동 결함평가 및 판정 모듈 개발)

  • Park, Ik-Keun;Park, Un-Su;Kim, Hyun-Mook;Kim, Chung-Seok;Um, Byong-Guk;Lee, Jong-Po
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.212-218
    • /
    • 2000
  • The importance and role of pre-/in-service inspection(PSI/ISI) for nuclear power plant(NPP) components are intimately related to plant design, safety, reliability, operation, etc. In this paper, for an effective and efficient management of large amounts of PSI/ISI data in NPPs, an intelligent database program(WS-IDPIN) for PSI/ISI data management of NPP was developed. WS-IDPIN program enables the prompt extraction of previously conducted PSI/ISI conditions and results so that the time-consuming data management, painstaking data processing and analysis in the past are avoided. Furthermore, development of ISI UT auto flaw evaluation and acceptance module based on ASME Code Sec. XI were presented. This module can be used for any angle beam examination from flat plate to spherical shapes as selected by the proper azimuthal angle. This program can be further developed as a unique PSI/ISI data management expert system.

  • PDF

Development of Micro-Blast Type Scabbling Technology for Contaminated Concrete Structure in Nuclear Power Plant Decommissioning

  • Lee, Kyungho;Chung, Sewon;Park, Kihyun;Park, SeongHee
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.1
    • /
    • pp.99-110
    • /
    • 2022
  • In decommissioning a nuclear power plant, numerous concrete structures need to be demolished and decontaminated. Although concrete decontamination technologies have been developed globally, concrete cutting remains problematic due to the secondary waste production and dispersion risk from concrete scabbling. To minimize workers' radiation exposure and secondary waste in dismantling and decontaminating concrete structures, the following conceptual designs were developed. A micro-blast type scabbling technology using explosive materials and a multi-dimensional contamination measurement and artificial intelligence (AI) mapping technology capable of identifying the contamination status of concrete surfaces. Trials revealed that this technology has several merits, including nuclide identification of more than 5 nuclides, radioactivity measurement capability of 0.1-107 Bq·g-1, 1.5 kg robot weight for easy handling, 10 cm robot self-running capability, 100% detonator performance, decontamination factor (DF) of 100 and 8,000 cm2·hr-1 decontamination speed, better than that of TWI (7,500 cm2·hr-1). Hence, the micro-blast type scabbling technology is a suitable method for concrete decontamination. As the Korean explosives industry is well developed and robot and mapping systems are supported by government research and development, this scabbling technology can efficiently aid the Korean decommissioning industry.

A Study on Applicability of Ultrasonic Flowmeter to Feedwater Flow Measurements in Nuclear Power Plants (원자력발전소의 급수유량 측정에 대한 초음파유량계의 적용성 연구)

  • Yu Sung-Sik;Park Jong-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.1 s.18
    • /
    • pp.57-65
    • /
    • 2003
  • The measurement uncertainties of an ultrasonic flowmeter were analyzed to evaluate its applicability to the measurement of the steam generator feedwater flow-rate in a nuclear power plant. The analyses of measurement uncertainties of a reactor power were also performed with the analyses of feedwater flow measurement uncertainties. Two ultrasonic flowmeters based on a cross-correlation technique and a transit time method were used in this study. The ultrasonic flowmeters were installed on a feedwater pipe line of a typical 1000 MWe Korea-standardized nuclear power plant to take the necessary data. The results have shown that the measurement uncertainties of the ultrasonic flowmeters are adequately smaller than those or a venturi meter. The research has also indicated that the measurement uncertainties of the reactor power based on the ultrasonic flowmeter uncertainties are sufficiently bounded by the uncertainty range usually assumed in nuclear safety analyses.

Technical Survey on the Classification and Characteristics of UAV's Power Plant (UAV 추진기관의 종류 및 특성에 관한 기술적 고찰)

  • Lee, Dong-Hun;Paeng, Ki-Suk;Kim, Yu-Il;Park, Boo-Min;Choi, Seong-Man;Huh, Hwan-Il
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.3
    • /
    • pp.79-86
    • /
    • 2010
  • The characteristics and classification of UAV power plants were studied. The energy source for electric generation and power source for internal combustion engine for UAVs were compared. The advantage and drawbacks of power plants were analyzed respectively and the performance demand condition was suggested for next generation UAV power plant finally.

Safety Evaluation for Restoration Process on Plastic Deformed Cylindrical Beam (소성변형된 실린더형 빔의 복원 안전성 평가)

  • Park Chi-Yong;Boo Myung-hwan
    • Journal of the Korean Society of Safety
    • /
    • v.20 no.1 s.69
    • /
    • pp.7-12
    • /
    • 2005
  • In heavy industrial fields such as power plant and chemical plant, it is often necessary to restore a damaged part of large machinery or structure which is installed in the hazard working place. In this paper, to evaluate the safety of plastic deformed cylindrical beam a finite element technique has been used. The variations of residual stresses on the process of damaging and restoring for surfaces and cross-sections have been examined. The results show that the maximum von Mises stresses occur outer cylinder surfaces of boundary between cylindrical beam support md cylindrical beam when deformation procedure and restoring force is applied. The maximum residual stress remains 158.6MPa in the inner wall and this value correspond to $53\%$ of yield stress then restoration procedure is finished.