• 제목/요약/키워드: Power Plant Control

검색결과 1,511건 처리시간 0.036초

석탄화력발전소 보일러 연료제어 알고리즘과 분산제어시스템의 개발 (The Development of Boiler Fuel Control Algorithm and Distributed Control System for Coal-Fired Power Plant)

  • 임건표;이흥호
    • 전기학회논문지P
    • /
    • 제62권1호
    • /
    • pp.36-44
    • /
    • 2013
  • This paper is written for the development and application of boiler fuel control algorithm and distributed control system of coal-fired power plant by the steps of design, coding, simulation test, site installation and site commissioning test. Fuel control algorithm has the upper algorithm and it is boiler master control algorithm that controls the fuel, feed water, air by generation output demand. Generation output demand by power load influences fuel control. Because fuel can not be supplied fast to the furnace of boiler, fuel control algorithm was designed adequately to control the steam temperature and to prevent the explosion of boiler. This control algorithms were coded to the control programs of distributed control systems which were developed domestically for the first time. Simulator for coal-fired power plant was used in the test step. After all of distributed control systems were connected to the simulator, the tests of the actual power plant were performed successfully. The reliability was obtained enough to be installed at the actual power plant and all of distributed control systems had been installed at power plant and all signals were connected mutually. Tests for reliability and safety of plant operation were completed successfully and power plant is being operated commercially. It is expected that the project result will contribute to the safe operation of domestic new and retrofit power plants, the self-reliance of coal-fired power plant control technique and overseas business for power plant.

석탄화력발전소 보일러 노내압력 제어알고리즘과 분산제어시스템의 개발 (The Development of Boiler Furnace Pressure Control Algorithm and Distributed Control System for Coal-Fired Power Plant)

  • 임건표;허광범;박두용;이흥호
    • 전기학회논문지P
    • /
    • 제62권3호
    • /
    • pp.117-126
    • /
    • 2013
  • This paper is written for the development and application of boiler furnace pressure control algorithm and distributed control system of coal-fired power plant by the steps of design, coding, simulation test, site installation and site commissioning test. The control algorithms were designed in the shape of cascade control for two parts of furnace pressure control and induced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability was obtained enough to be installed at the actual power plant and all of distributed control systems had been installed at power plant and all signals were connected mutually. Tests for reliability and safety of plant operation were completed successfully and power plant is being operated commercially. It is expected that the project result will contribute to the safe operation of domestic new and retrofit power plants, the self-reliance of coal-fired power plant control technique and overseas business for power plant.

석탄화력발전소 보일러 연소용 공기 제어알고리즘의 개발 (The Development of Boiler Combustion Air Control Algorithm for Coal-Fired Power Plant)

  • 임건표;이흥호
    • 전기학회논문지P
    • /
    • 제61권4호
    • /
    • pp.153-160
    • /
    • 2012
  • This paper is written for the development of boiler combustion air control algorithm of coal-fired power plant by the steps of design, coding and test. The control algorithms were designed in the shape of cascade control for two parts of air master, forced draft fan pitch blade by standard function blocks. This control algorithms were coded to the control programs of distributed control systems under development. The simulator for coal-fired power plant was used in the test step and automatic control, sequence control and emergency stop tests were performed successfully like the tests of the actual power plant. The reliability will be obtained enough to apply to actual site if the total test has been completed in the state that all algorithms were linked mutually. It is expected that the project result will contribute to the safe operation of domestic power plant and the self-reliance of coal-fired power plant control technique.

Supplementary Control of Conventional Coordinated Control for 1000 MW Ultra-supercritical Thermal Power Plant using Dynamic Matrix Control

  • Lee, Youngjun;Yoo, Euiyeon;Lee, Taehyun;Moon, Un-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.97-104
    • /
    • 2018
  • This paper proposes supplementary control of conventional coordinated control of a power plant which directly affects network frequency. The supplementary control with dynamic matrix control is applied for 1000 MW power plant with ultra-supercritical (USC) once-through boiler. The supplementary control signal is added to the boiler feedforward signal in the existing coordinated control logic. Therefore, it is a very practical structure that can maintain the existing multi-loop control system. This supplementary controller uses the step response model for the power plant system, and on-line optimization is performed at every sampling step. The simulation results demonstrate the effectiveness of the proposed supplementary control in a wide operating range of a practical 1000 MW USC power plant simulator. These results can contribute the stable operation of power system frequency.

화력 발전소 보일러 제어 시스템의 구성에 관한 연구 (Configuration of a Boiler Control System in Thermal Power Plant)

  • 변승현;박두용;김병철;신만수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.168-168
    • /
    • 2000
  • In this paper, a boiler control system for thermal power plant is configured. The boiler control system for thermal power plant is largely composed of an ABC(Automatic Boiler Control) system and a MBC(Mill Burner Control) system. ABC system controls analog process values, so almost all analog control logic is dealt with in ABC system. On the other hand, MBC system relates to sequence control logic such as MFT logic, Furnace Purge, Safety related logic. Advanced control systems made from advanced countries deal with an ABC system and MBC system in a distributed control system. In this paper, we adopt a DCS as an ABC system and adopt a PLC system as a MBC system to configure a boiler control system for thermal power plant using domestic control system. Finally the validity of the configured boiler control system is shown via simulation using digital simulator for boiler system in thermal power plant.

  • PDF

발전소 과열증기 온도제어 시스템의 국산 DCS 적용에 관한 연구 (Study on application of domestic development DCS for S/H temp in the power plant)

  • 박익수;김은기;박성혁;이기원
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.292-296
    • /
    • 1992
  • There are lots of disturbance in the super heater temperature control system of power plant boiler as follows. 1.Burner light off. 2.Excess Air. 3.Burner tilt. 4.G.R fan flow. Temperature control system of super heater in the power plant has delay time about 5 min. So it is difficult to control the super heater temperature in the power plant. This paper show us the application of domestic development DCS to control the super heater temperature in seoul #5 thermal power plant unit.

  • PDF

100MW 발전소 개조 보일러의 증기온도 제어 (The Steam Temperature Control of Renovated Boiler in 100MW Power Plant)

  • 임건표;이흥호
    • 전기학회논문지
    • /
    • 제60권10호
    • /
    • pp.1935-1940
    • /
    • 2011
  • The control logic of steam temperature was redesigned, tested and applied to the power plant after its steam temperature equipments had been revised. This power plant use the ancillary gas gotten in the process of making iron in the steel mill. The boiler of power plant has the superheater and reheater to make the superheated steam. The superheater and reheater have the spray valve to control their temperature. The reheater has the gas bypass damper additionally in this plant. The control logics were redesigned in cascade forms and the initial parameters of control logics were calculated from the several step tests. The final parameters could be obtained through the several repeated tests and the feedforward functions were added by temperature deviation and air flow. The power plant is being commercially-operated normally by improved control logics and It is expected that this improved controls help the efficiency improvement and safe operation of plant.

Load Test Simulator Development for Steam Turbine-Generator System of Nuclear Power Plant

  • Jeong, Chang-Ki;Kim, Jong-An;Kim, Byung-Chul;Choi, In-Kyu;Woo, Joo-Hee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1384-1386
    • /
    • 2005
  • This paper focuses on development of load test simulator of a steam turbine-generator in a nuclear power plant. When load is taken off from electrical power network, it is very difficult to effectively control the steam flow to turbine of the nuclear turbine-generator, because of disturbances, such as electrical load and network unbalance on electrical network. Up to the present time, the conventional control system has been used for the load control on nuclear steam generator, owing to the easy control algorithms and the advantage which have been proven on the nuclear power plant. However, since there are problems with stability control during low power and start-up, only a highly experienced operator can operate during those procedures. Also, a great deal of time and an expensive simulator is needed for the training of an operator. The KEPRI is developed simulator for 600MW nuclear power plant to take a test of generator load rejection, throttle valve, and turbine load control. Total load test is implemented before start up.

  • PDF

발전설비 통풍기 날개각 제어작동기 신뢰성평가 모델 개발 (A development of reliability evaluation model for power plant fan pitch blade control actuator)

  • 손태하;허준영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.3259-3263
    • /
    • 2007
  • This paper describes the proceedings of creating countermeasures after analysis and maintenance be able to conduct operation safely in a power plant. in order to operate the power plant in a stable and reliable way, the best condition of the govemor system can be maintained through the response characteristic analysis of the control device for the pitch blade control hydraulic actuator. The fan pitch blade control hydraulic actuator of a 500MW large-scale boiler is frequently operated under normal operation conditions. Common problems or malfunctions of the pitch blade control hydraulic actuators leads to the decline of boiler thermal efficiency and unexpected power plant trip. The inlet and outlet gas can be controlled by using the fan pitch blade control hydraulic actuator in order to regulate the internal pressure of the furnace and control the frequency in the power plant facility which utilizes soft coals as a power source.

  • PDF

조력발전용 수차발전기의 기동·정지시스템에 관한 연구 (A Study on Start·Stop System at Water Turbine-Generator for Tidal Power Plant)

  • 오민환;박철원
    • 전기학회논문지P
    • /
    • 제63권2호
    • /
    • pp.113-118
    • /
    • 2014
  • Tidal power is one of new and renewable energy sources. Tidal power is generated by using the gap in the water level between the water outside and inside the embankment. All tidal power plant in Korea were being operated by import of turn-key from abroad. The know-how and technology which are the most important to build predictive control system has become increasingly difficult to obtain from advanced countries because most of them avoid to transfer, which the domestic development of the control system is needed. In this paper, a study on start stop system at water turbine-generator for tidal power plant at the beginning of development was presented. For improvement the efficiency and develope of core technology of the start stop system, the technique and characteristics of tidal power, modeling, maximum generation calculation method, and optimal control of joint control system in Sihwa tidal power plant were studied.