• 제목/요약/키워드: Power Plant

검색결과 7,204건 처리시간 0.043초

불충분한 고장 데이터에 기초한 발전소의 신뢰도 산정기법에 관한 연구 (Reliability Analysis for Power Plants Based on Insufficient Failure Data)

  • 이승철;최동수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권7호
    • /
    • pp.401-406
    • /
    • 2003
  • Electric power industries in several countries are currently undergoing major changes, mainly represented by the privatizations of the power plants and distribution systems. Reliable operations of the power plants directly contribute to the revenue increases of the generation companies in such competitive environments. Strategic optimizations should be performed between the levels of the reliabilities to be maintained and the various preventive maintenance costs, which require the accurate estimations of the power plant reliabilities. However, accurate estimations of the power plant reliabilities are often limited by the lack of accurate power plant failure data. A power plant is not supposed to be failed that often. And if it fails, its impact upon the power system stability is quite substantial in most cases, setting aside the significant revenue losses and lowered company images. Reliability assessment is also important for Independent System Operators(ISO) or Market Operators to properly assess the level of needed compensations for the installed capacity based on the availability of the generation plants. In this paper, we present a power plant reliability estimation technique that can be applied when the failure data is insufficient. Median rank and Weibull distribution are used to accommodate such insufficiency. The Median rank is utilized to derive the cumulative failure probability for each ordered failure. The Weibull distribution is used because of its flexibility of accommodating several different distribution types based on the shape parameter values. The proposed method is applied to small size failure data and its application potential is demonstrated.

발전 플랜트 O&M을 위한 아키텍처 프레임워크 개념모델에 관한 연구 (Research on a Conceptual Model of Architecture Framework for Power Plant Operations & Maintenance(Q&M))

  • 임용택
    • 시스템엔지니어링학술지
    • /
    • 제14권1호
    • /
    • pp.83-88
    • /
    • 2018
  • Engineering is a sector with more than three times the industrial effectiveness of manufacturing. In the domestic engineering life cycle, the Operations & Maintenance (O&M) phase is a relatively high level of technology. Based on accumulated knowledge of O&M phase, it is necessary to advance operating technology and expand overseas O&M market expenditure. This study is the early stage of knowledge-based power plant O&M service framework reference model. In this study, we propose a conceptual model of architecture framework for power plant O&M. We survey the architecture framework and reference model and propose conceptual model of architecture framework for power plant O&M. The conceptual model of architecture framework for power plant O&M consists of stakeholder, O&M scenario, O&M technology. In particular, the O&M technology is defined as the fourth industrial revolution intelligence information technology. We defined a meta model from the conceptual model to define the power plant O&M architecture framework. In the future, we intend to development an architecture framework from the conceptual model and meta model.

3상 전류평형 제어기술 적용장치 개발 (A Development of 3 Phase Current Balance Control Unit)

  • 천영식;성형수;원학재;한정훈
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 B
    • /
    • pp.1088-1090
    • /
    • 2001
  • In general, Power SCR(Silicon Controlled Rectifier) is most widely used in Power Plant as well as Industrial field. It has been controlled and operated according to its own control method. Especially, in case of Power plant, it plays a major role in AVR(Automatic Voltage Regulator) or electro chlorination control circuits. Generally, they used in Analog control system at above field. But each SCR current value is different because of load unbalance or switching characteristic variations, it may cause power plant unit trip or system disorder according to SCR element burn out or bad operating condition. Therefore, in this paper a development of 3 phase current balance control unit is described, it gets over the past analog control system limit, uses DSP(Digital signal processor) had high speed response, controls SCR gate firing angle for 3 phase current balance.

  • PDF

전기설비 사고의 열적 특성 분석 (Analysis of Heat Characteristics for Fault Power Utility)

  • 김기화
    • 한국화재소방학회논문지
    • /
    • 제11권4호
    • /
    • pp.25-31
    • /
    • 1997
  • In this study, EMTP(Electromagnetic Transients Program) which is one of the most well-known computer simulation methods is used to collect the data for a power plant fault. EMTP is the program for an interpretation of the phenomena of electric transients, and is designed to manifest the data of the electric current and voltage etc. at the time of a power plant fault. By EMTP, I analyze the properties of the heat energy which are transferred from the electrics when a power plant fault brings out. In terms of the results of this study, it is able to measure the heat energy at a power plant fault (power transformer) and to be acquired of the related data. And moreover, these data are expected to be used as a standard for the protection of the fire owing to a high voltage power transformer fault.

  • PDF

조력발전용 수차발전기의 기동·정지시스템에 관한 연구 (A Study on Start·Stop System at Water Turbine-Generator for Tidal Power Plant)

  • 오민환;박철원
    • 전기학회논문지P
    • /
    • 제63권2호
    • /
    • pp.113-118
    • /
    • 2014
  • Tidal power is one of new and renewable energy sources. Tidal power is generated by using the gap in the water level between the water outside and inside the embankment. All tidal power plant in Korea were being operated by import of turn-key from abroad. The know-how and technology which are the most important to build predictive control system has become increasingly difficult to obtain from advanced countries because most of them avoid to transfer, which the domestic development of the control system is needed. In this paper, a study on start stop system at water turbine-generator for tidal power plant at the beginning of development was presented. For improvement the efficiency and develope of core technology of the start stop system, the technique and characteristics of tidal power, modeling, maximum generation calculation method, and optimal control of joint control system in Sihwa tidal power plant were studied.

발전소 온배수의 수력에너지 개발에 관한 연구 (A Study on Hydro Energy Development of Discharged Cooling Water at the Power Plant)

  • 강금석;이대수;김지영
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.813-818
    • /
    • 2005
  • Cooling seawater of thermal power plant which amounts about 5 cms per 100 MWe has hydro energy of about 3,000 kW at the thermal power plant complex, but this useful hydro energy has not been developed. Therefore, the feasibility study on hydro energy development of three power plants located in the southern and western coast of Korea was performed. Three target power plants are Samcheonpo, Boryeong and Hadong thermal power plant. The design head to discharge cooling water by gravity and the head caused by tidal level in the southwestern coastal area, could be used for the production of electric power. The various alternatives were studied and technical feasibility and economical efficiency were clearly proved.

  • PDF

해저케이블 비용 모델을 이용한 HVAC 해상변전소 적정 위치 선정에 관한 연구 (A Study on Siting of HVAC Offshore Substation for Wind Power Plant using Submarine Cable Cost Model)

  • 원종남;문원식;허재선;김재철
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.451-456
    • /
    • 2013
  • Development of the technologies for offshore wind power is proceeding actively and the installation capacity is continuously increasing because of its many advantages in comparison with the land wind power. Accordingly, project for Southwestern 2.5GW offshore wind power plant is in progress in Korea. Design of electric power systems for offshore wind power plant is very important due to its high investment and operational costs. Hence, it needs to be designed in order to minimize costs. This way can be employed in determining the installation location of offshore substation for HVAC wind power plant. According to the offshore substation site, MV inter-array cable and HV export cable lengths vary and they change a total cost regarding submarine cable. This paper represents cost models with variables which are MV inter-array cable and HV export cable lengths to locate the offshore substation for HVAC wind power plant. It is classified into submarine cable installation cost, reactive power compensator installation cost, ohmic losses, and unsupplied energy cost. By minimizing a total cost, an appropriate installation site of the offshore substation is determined.

표준화력발전소의 발전폐수 통합을 이용한 용수 사용량 절감 (Curtailment of Water use Through the Integration of Process Waste Waters at the Standard Thermal Power Plant)

  • 문경석;장희수
    • 한국물환경학회지
    • /
    • 제22권3호
    • /
    • pp.437-443
    • /
    • 2006
  • The Water usage is relationship which is close with the administrative cost from industrial facility. It is not easy to reduce a water usage. This research is the optimization of the waste water quantity which process waste water integration of the standard thermal power plant in system operate time. The turbine rotates by force of the steam and it produces an electricity. Demineralization Water is manufacture purity manufacturing equipment and it is supplied in power plant channel. We knew a possibility of reducing from pure control process. When it is reduced the Back Washing time, Rinsing time of the gravity filter and the activated carbon filter. Also, It is possible even from regeneration phase in Condensate Polishing Demineralization System. In addition, There is also the water which the drain of the sampling water for watching the condition of power plant process will be able to use. Integrates these processes it will be able to reduce an annual 30,000 ton degree. The research is want to use the fundamental data for the water curtailment of the power plant.

신규원전의 설계특성 기반 정비효과성감시 프로그램 개발 (Development of Maintenance Effectiveness Monitoring Program based on Design Characteristics for New Nuclear Power Plant)

  • 염동운;현진우;송태영
    • 한국압력기기공학회 논문집
    • /
    • 제8권1호
    • /
    • pp.25-32
    • /
    • 2012
  • Korea Hydro & Nuclear Power Co. (KHNP) has developed and implemented the maintenance effectiveness monitoring (MR) programs for the operating nuclear power plants. The MR program is developed by reflecting design characteristics of the operating nuclear power plants to monitor the plant performance for improving the safety and reliability. Recently, KHNP has built a new nuclear power plant, and developed the MR program to establish the advanced maintenance system by reflecting unique design characteristics based on the OPR1000 standard model. So, the MR program developed in this study has another characteristics in comparison with the OPR1000 standard model, and we will verify the suitability of the MR program through evaluating initial performance of the plant. The safety and reliability of the new plant will be improved by developing and implementing the MR program.

화력발전소 주배관 3차원 변위측정시스템 개발 (Development of 3-D. Displacement Measurement System for Critical Pipe of Fossil Power Plant)

  • 송기욱;현중섭;하정수;조선영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1198-1205
    • /
    • 2003
  • Most domestic fossil power plant have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe system have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plant, 3-dimensional displacement measurement system were developed for the on-line monitoring system. 3-D Measurement system was developed with using the LVDT type sensor and rotary encoder type sensor, this system was installed and operated on the real power plant successfully. In the future time, network system of on-line diagnosis for critical pipe will be designed.

  • PDF