• Title/Summary/Keyword: Power Overshoot

Search Result 151, Processing Time 0.023 seconds

A Study on Steady-state and Transient Performance Simulation of Turboprop Engine(PT6A-62) (터보프롭엔진(PT6A-62)의 정.동적 성능모사에 관한 연구)

  • 공창덕;기자영;신현기
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.2
    • /
    • pp.61-70
    • /
    • 2000
  • The performance simulation program on the turboprop engine(PT6A-62), which is a main engine of the first trainer KT-1 in republic of Korea, was developed. Characteristics of engine components were required for the steady-state performance analysis including on and off design point analysis. In most cases, these were substituted for what scaled from well known engine components characteristics with the scaling law. The developed program was compared with CASTURB program which is well known for the simulation performance analysis, such as analysis results of mass flow rate, compressor pressure ratio, fuel flow rate, power, specific fuel consumption ratio and turbine inlet temperature in the following four cases, to evaluate whether the developed program is acceptable or not. The first case was the sea level static standard condition and other cases were considered with various flight Mach numbers, altitudes. After verifying the developed program, the partload performance analysis was carried out. Transient performance analysis for various fuel schedules were performed. When the fuel step increase of 0.1sec was performed, the overshoot of the compressor turbine inlet temperature occurred. However, the fuel ramp increase for longer than 0.1sec time was performed, the overshoot could be eliminated.

  • PDF

Double Boost Power-Decoupling Topology Suitable for Low-Voltage Photovoltaic Residential Applications Using Sliding-Mode Impedance-Shaping Controller

  • Tawfik, Mohamed Atef;Ahmed, Ashraf;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.881-893
    • /
    • 2019
  • This paper proposes a practical sliding-mode controller design for shaping the impedances of cascaded boost-converter power decoupling circuits for reducing the second order harmonic ripple in photovoltaic (PV) current. The cascaded double-boost converter, when used as power decoupling circuit, has some advantages in terms of a high step-up voltage-ratio, a small number of switches and a better efficiency when compared to conventional topologies. From these features, it can be seen that this topology is suitable for residential (PV) rooftop systems. However, a robust controller design capable of rejecting double frequency inverter ripple from passing to the (PV) source is a challenge. The design constraints are related to the principle of the impedance-shaping technique to maximize the output impedance of the input-side boost converter, to block the double frequency PV current ripple component, and to prevent it from passing to the source without degrading the system dynamic responses. The design has a small recovery time in the presence of transients with a low overshoot or undershoot. Moreover, the proposed controller ensures that the ripple component swings freely within a voltage-gap between the (PV) and the DC-link voltages by the small capacitance of the auxiliary DC-link for electrolytic-capacitor elimination. The second boost controls the main DC-link voltage tightly within a satisfactory ripple range. The inverter controller performs maximum power point tracking (MPPT) for the input voltage source using ripple correlation control (RCC). The robustness of the proposed control was verified by varying system parameters under different load conditions. Finally, the proposed controller was verified by simulation and experimental results.

Duplex Pulse Frequency Modulation Mode Controlled Series Resonant High Voltage Converter for X-Ray Power Generator

  • Chu Enhui;Ogura Koki;Moisseev Serguei;Okuno Atsushi;Nakaoka Mutsuo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.295-300
    • /
    • 2001
  • A variety of high voltage DC power supplies employing the high frequency inverter are difficult to achieve soft switching considering a quick response and no overshoot response under the wide load variation ranges which are used in medical-use x-ray high voltage generator from 20kV to 150kV in the output voltage and from 0.5mA to 1250mA, respectively. The authors develops soft switching high voltage DC power supply designed for x-ray power generator applications, which uses series resonant inverter circuit topology with a multistage voltage multiplier instead of a conventional high voltage diode rectifier connected to the second-side of a high-voltage transformer with a large turn ratio. A constant on-time dual mode frequency control scheme operating under a principle of zero-current soft switching commutation is described. Introducing the multistage voltage multiplier, the secondary transformer turn-numbers and stray capacitance of high-voltage transformer is effective to be greatly reduced. It is proved that the proposed high-voltage converter topology with dual mode frequency modulation mode control scheme is able to be the transient response and steady-state performance in high-voltage x-ray tube load. The effectiveness of this high voltage converter is evaluated and discussed on the basis of simulation analysis and observed data in experiment.

  • PDF

A experimental study on the improvement of lightning impulse voltage waveforms (뇌임펄스전압파형의 개선에 관한 실험적 고찰)

  • Lee, J.G.;Kim, M.K.;Jeong, J.Y.;Kim, I.S.;Choi, I.S.;Moon, I.W.;Kang, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1854-1856
    • /
    • 2004
  • In this paper, there have been brief review about the important consideration in laboratory planning and designing 4.2MV impulse voltage generator(IVG), which enable to test and evaluate the UHV dielectric performance of power electric apparatus up to 765kV-class. To improve and reinforce the test ability of the IVG and itself against test object being tested by KERI hereafter, wide investigation and an analysis for a solution, especially overshoot compensation method. With the special consideration about those matters in settling down the 4.2MV IVG have been described with the experimental approaching.

  • PDF

An integral square error-based model predictive controller for two area load frequency control

  • Kassem, Ahmed M.;Sayed, Khairy;El-Zohri, Emad H.;Ali, Hossam H.
    • Advances in Energy Research
    • /
    • v.5 no.1
    • /
    • pp.79-90
    • /
    • 2017
  • The main objective of load frequency control (LFC) is to keep the frequency value at nominal value and force deviation of the frequency to zero in case of load change. This paper suggests LFC by using a model predictive control (MPC), based on Integral Square Error (ISE) method designed to optimize the damping of oscillations in a two-area power system. The MPC is designed and simulated with a model system in state space, for robust performance in the system response. The proposed MPC is tuned by ISE to achieve superior efficiency. Moreover, its performance has been assessed and compared with the PI and PID conventional controllers. The settling time and overshoot with MPC are extremely minimized as compared with conventional controllers.

Prediction of the transient response of the IGBT using the Spice parameter (Spice parameter를 이용한 IGBT의 과도응답 예측)

  • 이효정;홍신남
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.815-818
    • /
    • 1998
  • The Insulated Gate Bipolar Transistor has the characteristics of MOSFET and BJT. The characteristics of proposed device exhibit high speed switching, the voltage controlled property, and the low ON resistance. This hybrid device has been used and developed continuously in the power electronic engineering field. We can simulate many IGBT circuits, such as the motor drive circuit, the switching circuits etc, with PSpice. However, some problems in PSpice is that the IGBT is old-fashioned and is very difficult to get it. In this paper, the IGBT in PSpice is considered as the basic structure. We changed the valuse of base width, gate-drain overlaping area, device area, and doping concentration, then calculated MOS transconductance, ambipolar recombination lifetime etc. Using this resultant parameter, we could predict the transient response characteristicsof IGBT, for examplex, voltage overshoot, the rising curve of voltage, and the falling curve of current.

  • PDF

New Anti-windup PI Control for Variable-Speed Motor Drives (가변속 전동기구동을 위한 새로운 반포화 PI 제어기)

  • 신휘범;이정훈;정세교
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.357-363
    • /
    • 1997
  • The windup phenomenon appears and results in the performance degradation when the PI controller output is saturated. A new anti-windup PI controller is proposed to improve the control performance of the variable-speed motor drives and it is experimentally applied to the speed control of a vector-controlled induction motor driven by a pulse width modulated(PWM) voltage source inverter (VSI). The integral state is separately controlled corresponding to whether the PI controller output is saturated or not. The experimental results show that the speed response has the much improved performances such as small overshoot and fast settling time over the conventional anti-windup technique. Although the operating speed command is changed, the similar control performance can be obtained by using the PI gains selected in the linear region.

  • PDF

Internal Model Control of UPS Inverter using Resonance Model

  • Park J. H.;Kim D. W.;Kim J. K.;Lee H. W.;Noh T. K.;Woo J. I.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.184-188
    • /
    • 2001
  • In this paper, a new fully digital control method for single-phase UPS inverter, which is based on the double control loop such as the outer voltage control loop and inner current control loop, is proposed. The inner current control loop is designed and implemented in the form of internal model control and takes the presence of computational time-delay into account. Therefore, this method provides an overshoot-free reference-to-output response. In the proposed scheme, the outer voltage control loop employing P controller with resonance model implemented by a DSP is introduced. The proposed resonance model has an infinite gain at resonant frequency, and it exhibits a function similar to an integrator for AC component. Thus the outer voltage control loop causes no steady state error as regard to both magnitude and phase. The effectiveness of the proposed control system has been demonstrated by the simulation and experimental results respectively.

  • PDF

Pantograph Detachment Detector and Control Scheme for a PWM rectifier Considering Pantograph Detachement Condition (전동차용 PWM 정류기를 위한 집전기(pantograph) 접점상태 검출방법 및 비접촉상태를 고려한 PWM 정류기 제어기법)

  • Song Hong-Seok;Nam Kwanghee
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.275-278
    • /
    • 2003
  • The pantograph contact can be disrupted due to irregularities in the motion. The pantograph detachment prohibits the current flow and makes the system uncontrollable. During the pantograph detachment period, the control error are accumulated by the integral property of the controller. The output of the controller, therefore, can be induced to be an extremely large value. When the pantograph is reattached, the extremely large output of the controllers causes a very high overshoot (or under-shoot) of the line current and the DC-link voltage. This work proposes a new method for detecting the pantograph bouncing conditions and designs a controller considering such conditions based on the pantograph bouncing detector.

  • PDF

Elastodynamic Response of a Crack Perpendicular to the Graded Interfacial Zone in Bonded Dissimilar Materials Under Antiplane Shear Impact

  • Kim, Sung-Ho;Choi, Hyung-Jip
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1375-1387
    • /
    • 2004
  • A solution is given for the elastodynamic problem of a crack perpendicular to the graded interfacial zone in bonded materials under the action of anti plane shear impact. The interfacial zone is modeled as a nonhomogeneous interlayer with the power-law variations of its shear modulus and mass density between the two dissimilar, homogeneous half-planes. Laplace and Fourier integral transforms are employed to reduce the transient problem to the solution of a Cauchy-type singular integral equation in the Laplace transform domain. Via the numerical inversion of the Laplace transforms, the values of the dynamic stress intensity factors are obtained as a function of time. As a result, the influences of material and geometric parameters of the bonded media on the overshoot characteristics of the dynamic stress intensities are discussed. A comparison is also made with the corresponding elastostatic solutions, addressing the inertia effect on the dynamic load transfer to the crack tips for various combinations of the physical properties.