• Title/Summary/Keyword: Power Monitoring System

Search Result 1,942, Processing Time 0.033 seconds

ON-LINE CALCULATION OF 3-D POWER DISTRIBUTION

  • Park, Y. H.;W. K. In;Park, J. R.;Lee, C. C.;G. S. Auh
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.459-464
    • /
    • 1996
  • The 3-D power distribution synthesis scheme was implemented in Totally Integrated Core Operation Monitoring System (TICOMS), which is under development as the next generation core monitoring system. The on-line 3-D core power distribution obtained from the measured fixed incore detector readings is used to construct the hot pin power as well as the core average axial power distribution. The core average axial power distribution and the hot pin power of TICOMS were compared with those of the current digital on-line core monitoring system, COLSS, which construct the core average axial power distribution and the pseudo hot pin power. The comparison shows that TICOMS results in the slightly more accurate core average axial power distribution and the less conservative hot pin power. Therefore, these results increased the core operating margins. In addition, the on-line 3-D power distribution is expected to be very useful for the core operation in the future.

  • PDF

Development of On-line Displacement Monitoring System for High Temperature Steam Pipe of Fossil Power Plant (화력발전소 고온 증기배관 실시간 변위감시 시스템 개발)

  • Lee Young Shin;Hyun Jung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.6 s.171
    • /
    • pp.83-89
    • /
    • 2005
  • Most domestic fossil power plants have exceeded 100,000 hours of operation with the severe operating condition. Among the critical components of fossil power plant, high temperature steam pipe systems have had a many problems and damage from unstable displacement behavior because of frequent start up and shut down. In order to prevent the serious damage and failure of the critical pipe system in fossil power plants, 3-dimensional displacement measurement system was developed for the on-line monitoring. Displacement measurement system was developed with a use of a LVDT type sensor and two rotary encoder type sensors. This system was installed and operated on the real power plant successfully.

The Development of Industry Operation Control System using Intelligent Web Monitoring for the Heat Treatment Process (열처리공정의 지능형 웹 모니터링 산업용 공정제어 시스템 개발)

  • Oh, J.H.;Bae, H.J.;Choi, G.S.;Ahn, D.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.181-186
    • /
    • 2005
  • Because of advanced control technology, Shop floor control system of various kinds of equipment and machinery need a web based remote monitoring to control process efficiently. This paper presents the development of Operation Control System. Operation Control System(OCS) is based on intelligent web monitoring, so that OCS is improved the working condition for the line of heat treatment process and the product's quality. The developed OCS is consisted of Atmega128(MCU) based on embedded system, running the data logging of the line of heat treatment process. Web monitoring system is based on CS8900 ethernet controller and TCP/IP for remote monitoring responsibility between a server and clients and controlling the progress of entire system. The developed OCS is implemented on the line of heat treatment process and shows the improvement of environment condition, product's quality and efficiency of process line.

  • PDF

A Reactive Power Compensation Monitoring System for Factory Electrical Installation Using Active Database (능동 데이터베이스 기반 무효전력 보상장치 감시제어 시스템)

  • Choi, Sang-Yule
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.189-194
    • /
    • 2012
  • The main purpose of reactive power compensation monitoring system is to manage factory electrical installation efficiently by On-Off switching reactive power compensation equipment. The existing reactive power compensation monitoring system is only able to be managed by operator whenever electrical installation needed reactive power. Therefore, it may be possible for propagating the installation's faults when operator make the unexpected mistakes. To overcome the unexpected mistakes, in this paper, the author presents a reactive power compensation monitoring system for factory electrical installation using active database. by using active database production rule, stated system can minimize unexpected mistake and can operate centralized monitoring system efficiently. Test results on the five factory electrical installations show that performance is efficient and robust.

A Development of Real-time Monitoring Techniques for Synchronous Electric Generator Systems (동기 발전기 시스템의 실시간 모니터링 기술 개발)

  • Cho, Hyun Cheol
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.182-187
    • /
    • 2017
  • Synchronous generators have been significantly applied in large-scale power plants and its monitoring systems are additionally established to sequentially observe states and outputs. We develop a computer based monitoring device for three-phase synchronous power generators in this paper. First, a test-bed of such generator system is created and then a interface board is constructed to transfer electric signals including the output voltage and the current from generators into a computer system via a data acquisition device. Its RMS(root-mean-square) values are continuously shown on a screen of computer systems and its time-histories graphs are additionally illustrated under a graphic user interface(GUI) mode. Lastly, we carry out real-time experiments using the generator system with the monitoring device to demonstrate its reliability and superiority by comparing results of a generic power analyzer which is well-used in measuring various power systems practically.

Implementation of the Monitoring System for Power Condition System(PCS) using a Smartphone and Bluetooth Communication (스마트폰과 블루투스 통신을 이용한 태양광 인버터 모니터링 시스템 구현)

  • Je, Hyun-Woo;Yang, Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.10
    • /
    • pp.2185-2191
    • /
    • 2012
  • The monitoring of the existing inverter is being implemented using a local computer of web monitoring, but in this paper, the remote monitoring system of the power condition system was implemented using a Bluetooth communication at a convenient position for the user that can be monitored without the computer. The proposed system was designed to be able to monitor the wanted information by using the protocol of inverter. Also when the power condition system has failed, the fault history and the generated time of inverter were stored in the Bluetooth device. Finally the performance of the proposed system was evaluated through experiments, it showed the good performance and the possibility of commercialization.

Power System Fault Monitoring System using Wavelelet Transform and GPS for Accurate Time Synchronization (웨이블릿 변환과 GPS 정밀시각동기를 이용한 전력계통 고장점 모니터링 시스템에 관한 연구)

  • Kim, Gi-Taek;Kim, Hyuck-Soo;Choi, Jung-Yong
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.105-110
    • /
    • 2001
  • A continuous and reliable electrical energy supply is the objective of any power system operation. A transmission line is the part of the power system where faults are most likely to happen. This paler describes the use of wavelet transform for analyzing power system fault transients in order to determine the fault location. Synchronized sampling was made possible by precise time receivers based on GPS time reference, and the sampled data were analyzed using wavelet transform. This paper describes a fault location monitoring system and fault locating algorithm with GPS, DSP processor, and data acquisition board, and presents some experimental results and error analysis.

  • PDF

Assessment of a smartphone-based monitoring system and its application

  • Ahn, Hoyong;Choi, Chuluong;Yu, Yeon
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.3
    • /
    • pp.383-397
    • /
    • 2014
  • Information technology advances are allowing conventional surveillance systems to be combined with mobile communication technologies, creating ubiquitous monitoring systems. This paper proposes monitoring system that uses smart camera technology. We discuss the dependence of interior orientation parameters on calibration target sheets and compare the accuracy of a three-dimensional monitoring system with camera location calculated by space resectioning using a Digital Surface Model (DSM) generated from stereo images. A monitoring housing is designed to protect a camera from various weather conditions and to provide the camera for power generated from solar panel. A smart camera is installed in the monitoring housing. The smart camera is operated and controlled through an Android application. At last the accuracy of a three-dimensional monitoring system is evaluated using a DSM. The proposed system was then tested against a DSM created from ground control points determined by Global Positioning Systems (GPSs) and light detection and ranging data. The standard deviation of the differences between DSMs are less than 0.12 m. Therefore the monitoring system is appropriate for extracting the information of objects' position and deformation as well as monitoring them. Through incorporation of components, such as camera housing, a solar power supply, the smart camera the system can be used as a ubiquitous monitoring system.

Power supply system of the telecommunication equipment with monitoring function (모니터 기능을 갖는 통신기기용 전원 시스템)

  • Lee, Jung-Kee;Kim, Young-Tae;Kim, Chang-Sun;Kim, Hee-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.309-311
    • /
    • 1995
  • Recently, a power supply system of the telecommunication equipments with monitoring function has been widely studied. In the power supply system which is apart from the central station, it is required to check and test the operating states of the system at the central station. In this paper, the power supply system with monitoring function is discussed. In the system, the Full-Bridge converter is designed as a power supply and it has the ratings of DC 280-340V input and DC 48V, 480W output. And the monitoring part of the system is composed of a voltage and current sensing unit A/D converter, I/O card, and a personal computer. The operating states of the system is monitored by checking the voltage and current variation at input and output, and it is represented by graphical modes. By conducting the experiment, it is confirmed that the operating states of the system is well monitored.

  • PDF

IoT-based low-cost prototype for online monitoring of maximum output power of domestic photovoltaic systems

  • Rouibah, Nassir;Barazane, Linda;Benghanem, Mohamed;Mellit, Adel
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.459-470
    • /
    • 2021
  • This paper presents a low-cost prototype for monitoring online the maximum power produced by a domestic photovoltaic (PV) system using Internet of Things (IoT) technology. The most common tracking algorithms (P&O, InCond, HC, VSS InCond, and FL) were first simulated using MATLAB/Simulink and then implemented in a low-cost microcontroller (Arduino). The current, voltage, load current, load voltage, power at the maximum power point, duty cycle, module temperature, and in-plane solar irradiance are monitored. Using IoT technology, users can check in real time the change in power produced by their installation anywhere and anytime without additional effort or cost. The designed prototype is suitable for domestic PV applications, particularly at remote sites. It can also help users check online whether any abnormality has happened in their system based simply on the variation in the produced maximum power. Experimental results show that the system performs well. Moreover, the prototype is easy to implement, low in cost, saves time, and minimizes human effort. The developed monitoring system could be extended by integrating fault detection and diagnosis algorithms.