• 제목/요약/키워드: Power Module Design

검색결과 848건 처리시간 0.028초

Experimental Study of a Power-Over-Fiber Module and Multimode Optical Fiber for a Fishing Camera System

  • Lee, Hyuek Jae;Jung, Gwang S.
    • Current Optics and Photonics
    • /
    • 제1권5호
    • /
    • pp.468-473
    • /
    • 2017
  • We determined the feasibility of a fishing camera system using an optical fiber as the fishing line by testing a power-over-fiber (POF) module and multimode optical fiber. Operation of the remote camera module (RCM) without the battery was preferred because the removal of the charging or battery replacement section enabled a waterproof single-body type design. The average efficiency of the photovoltaic power converter (PPC) in the tested POF module was 32.6% at 820 nm, and thus, a high-power laser of at least 1.27 W was required for operating the developed RCM with an electrical dissipation of 413 mW. Because the optical fiber was wound on a fishing reel, composite loss composed of bending and tensile loss occurred. To mitigate the composite loss, we employed a simple holder that showed an improvement in the composite loss of 0.38 dB to 0.8 dB, which was considerably better than the losses without the holder.

고효율 회전 집광형 하이브리드 태양광 LED 가로등 모듈 시스템 연구 (A study of high-efficiency rotating condensing hybrid solar LED street light module system)

  • 민경호;전용한
    • Design & Manufacturing
    • /
    • 제15권3호
    • /
    • pp.50-55
    • /
    • 2021
  • Solar power generation, which is one of the methods of using solar energy, has a high possibility of practical implementation compared to other renewable energy power generation, and it has the characteristic that it can generate as much power as needed in necessary places. In addition, maintenance is easy, unmanned operation is possible, and power management can be performed more efficiently if operated in a hybrid method with existing electric energy. Therefore, in this study, numerical analysis using a computer program was performed to analyze the efficient operation and performance improvement of solar energy of the rotating condensing type solar LED street lamp. As a result, the two-axis tracking type could obtain 15.23 % more electricity per year than the fixed type, and additional auxiliary power generation was required for the fixed type by 19 % per year than the tracking type. As a result of computational fluid dynamics(CFD) simulation for PV module surface temperature prediction, the The surface temperature of the Photovoltaics(PV) module incident surface was predicted to be about 10℃ higher than that of the fixed type.

동적신경망 NARX 기반의 SAR 전력모듈 안전성 연구 (A NARX Dynamic Neural Network Platform for Small-Sat PDM)

  • 이해준
    • 한국정보통신학회논문지
    • /
    • 제24권6호
    • /
    • pp.809-817
    • /
    • 2020
  • 소형위성 전력분배 및 전송모듈의 설계와 개발과정에서 딥러닝 알고리즘으로 동적 전력자원의 안정성을 평가하였다. 안정성 평가에 따른 요구사항은 소형위성 탑재체인 SAR 레이더의 전력분배모듈과 수요모듈의 전력전송기능을 구성하였다. 전력모듈인 PDM을 구성하는 스위칭 전력부품의 성능확인을 위해 동적신경망을 활용하여 신뢰성을 검증하였다. 신뢰성 검증을 위한 딥러닝 적용대상은 소형위성 본체로부터 공급되는 전력에 대한 탑재체의 전력분배기능이다. 이 기능에 대한 성능확인을 위한 모델링 대상은 출력전압변화추이(Slew Rate Control), 전압오류(Voltage Error), 부하특성(Load Power)이다. 이를 위해 첫째, 모델링으로 Coefficient Structure 영역을 정의하고 PCB모듈을 제작하여 안정성과 신뢰성을 비교 평가하였다. 둘째, 딥러닝 알고리즘으로 Levenberg-Marquare기반의 Two-Way NARX신경망 Sigmoid Transfer를 사용하였다.

7-11 GHz, 광대역 MPM 설계 및 제작 (Design and fabrication on 7-11 GHz, Broadband MPM)

  • 최길웅;이유리;김기호;최진주;소준호
    • 한국ITS학회 논문지
    • /
    • 제5권1호
    • /
    • pp.13-19
    • /
    • 2006
  • 본 논문에서는 7 - 11 GHz 대역에서 동작하는 광대역 Microwave Power Module (MPM)을 설계하고 제작하였다. MPM 은 TWT (Traveling Wave Tube)와 SSA (Solid State Amplifier)로 구성되며, TWT와 SSA의 이득을 최적으로 배분하여 잡음지수를 줄일 수 있도록 설계하였다. Agilent사의 ADS (Advanced Design System)을 이용하여 SSA의 컴퓨터 모델링과 시뮬레이션을 수행 하였으며, 직렬 분포형 증폭기 구조를 이용하여 설계 및 제작하였다. 제작된 광대역 MPM은 7 - 11 GHz 대역에서 8.3 - 10.02 dB의 잡음 지수, 9 GHz에서 38.12 dBm의 출력 전력이 측정되었다.

  • PDF

폴리머 피뢰기의 모듈 설계 및 성능에 관한 연구 (A Study on Module Design and Performance of Polymer Arrester)

  • 조한구;천종욱;강영길
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 춘계학술대회 논문집 유기절연재료 방전 플라즈마연구회
    • /
    • pp.108-111
    • /
    • 2003
  • The main objective of this paper is to module design and pressure relief test a new type of polymer gapless surge arrester for power distribution line. Metal oxide surge arrester for most electric power system applications, power distribution line and electric train are now being used extensively to protect overvoltage due to lightning. Surge arresters with porcelain housing must not have explosive breakage of the housing to minimize damage to other equipment when subjected to internal high short circuit current. When breakdown of gapless elements in a surge arrester occurs due to flashover, fault short current flows through the arrester and internal pressure of the arrester rises. The pressure rise can usually be limited by fitting a pressure relief diaphragm and transferring the arc from the inside to the outside of the housing. However, there is possibility of porcelain fragmentation caused by the thermal shock, pressure rise, etc. Non-fragmenting of the housing is the most desired way to prevent damage to other equipment. The pressure change which is occurred by flashover become discharge energy. This discharge energy raises to damage arrester housing and arrester housing is dispersed as small fragment. Therefore, the pressure relief design is requested to obstruct housing dispersion.

  • PDF

Sustainable Fashion Design Module Development for Higher Education: Adaptation of ADDIE Instructional Model

  • Lim, Hye-Won;Burton, Elizabeth
    • 패션비즈니스
    • /
    • 제25권6호
    • /
    • pp.25-45
    • /
    • 2021
  • Due to the fashion industry taking responsibility for their garment manufacturing, a significant number of UK universities are focusing on combining sustainability in their curriculum to support future employees' skills and knowledge in sustainable fashion. A proper understanding of educational and instructional theories is needed to develop effective teaching and learning materials and environments. Therefore, this study aimed to evaluate the Fashion Design module created with consideration of sustainability using ADDIE instructional model. For evaluation, the teaching materials, including the module brief and the PowerPoint slides for each session, were used. Ten students were interviewed and observed along with two tutors, also interviewed to analyze the strengths and weaknesses of the module from a variety of viewpoints. With sustainable fashion being embedded into specialized higher education courses, tutors decided to incorporate sustainability into the module as an introduction to this topical subject in order to build a stronger foundation of knowledge and challenge traditional ways of working. Results showed that combining sustainability into the design and technical sessions had a positive influence on students who built upon their existing knowledge. Tutors researched the need for change within the industry in line with the Sustainable Development Goals and aligned the content to inform the students of the current crisis. This study could provide a guideline to create instructional material for sustainable fashion design courses.

대면적 태양광 모듈의 기계적 신뢰성 평가를 위한 모델 (Structural Analysis Model to Evaluate the Mechanical Reliability of Large-area Photovoltaic Modules)

  • 노요한;정정호;이재형
    • Current Photovoltaic Research
    • /
    • 제10권2호
    • /
    • pp.56-61
    • /
    • 2022
  • Recently, the expansion of the domestic solar market due to the promotion of eco-friendly and alternative energy-related policies is promising, and it is expected to lead the high-efficiency/high-power module market based on M10 or larger cells to reduce LCOE, 540-560W, M12 based on M10 cells Compared to the existing technology with an output of 650-700W based on cells, it is necessary to secure competitiveness through the development of modules with 600W based on M10 cells and 750W based on M12 cells. For the development of high efficiency/high-power n-type bifacial, it is necessary to secure a lightweight technology and structure due to the increase in weight of the glass to glass module according to the large area of the module. Since the mechanical strength characteristics according to the large area and high weight of the module are very important, design values such as a frame of a new structure that can withstand the mechanical load of the Mechanical Load Test and the location of the mounting hole are required. In this study, a structural analysis design model was introduced to secure mechanical reliability according to the enlargement of the module area, and the design model was verified through the mechanical load test of the actual product. It can be used as a design model to secure the mechanical reliability required for PV modules by variables such as module area, frame shape, and the location and quantity of mounting holes of the structural analysis model verified. A relationship of output drop can be obtained.

A Buck-Boost Converter-Based Bipolar Pulse Generator

  • Elserougi, Ahmed A.;Massoud, Ahmed M.;Ahmed, Shehab
    • Journal of Power Electronics
    • /
    • 제17권6호
    • /
    • pp.1422-1432
    • /
    • 2017
  • This paper presents a buck-boost converter-based bipolar pulse generator, which is able to generate bipolar exponential pulses across a resistive load. The concept of the proposed approach depends on operating the involved buck-boost converters in discontinuous current conduction mode with high-voltage gain and enhanced efficiency. A full design of the pulse generator and its passive components is presented to ensure generating the pulses with the desired specifications (rise time, pulse width, and pulse magnitude) for a given load resistance and input dc voltage. In case of moderate pulsed output voltages (i.e. few of kV), one module of the presented bipolar generator can be employed. While in case of high-voltage pulsed output, multi-module version can be employed, where each module is fed from an isolated dc source and their outputs are connected in series. Simulation models for the proposed approach are built to elucidate their performance in case of one-module as well as multi-module based generator. Finally, a scaled-down prototype for one-module of buck-boost converter-based bipolar pulse generator is implemented to validate the proposed concept.

Three-Phase Soft Switching Sinewave Inverter with Bridge Power Module Package Configurated Auxiliary Resonant AC Link Snubber

  • Iyomori Hisashi;Nagai Shin-ichiro;Shiraishi Kazuhiro;Ahmed Tarek;Eiji Hiraki;Mutsuo Nakaoka
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2003년도 춘계전력전자학술대회 논문집(2)
    • /
    • pp.507-510
    • /
    • 2003
  • This paper presents a novel prototype of tile three-phase bridge power block module type a auxiliary resonant AC link snubber circuit, which is effectively used for the three-phase voltage source type sinewave soft switching PWM inverter using IGBTs. Its operating principle Is described for current source load model, along with its practical design approach based on the simulation data. The performance evaluation of the three-phase voltage source type snewave soft switching PWM inverter incorporating a single three-phase bridge mo여le of active auxiliary resonant AC link snubber treated here Is illustrated, which is concerned with power duality efficiency power loss analysis. This inverter is discussed as compared with those of tile three-phase voltage source type sinewave hard switching PWM inverter. The power loss analysis of this soft switching PWM Inverter using IGBT power modules is evaluated on the basis of the measured v-i characteristics and switching power losses of IGBT, and antiparaliel diodes. The practical effectiveness of this inverter is proven by the power loss analysis for distributed power supply.

  • PDF

18650 Li-ion battery Module의 Cell-to-Cell 온도 편차 최소화를 위한 양방향 냉각에 대한 실험적 연구 (Experimental Study on Bi-directional Air Cooling System for 18650 Li-ion Battery Module to Minimize Cell-to-Cell Temperature Variation)

  • 장호선;박민규;전지환;박성수;김태우;박성진
    • 한국수소및신에너지학회논문집
    • /
    • 제28권4호
    • /
    • pp.407-418
    • /
    • 2017
  • Battery heat management is essential for high power and high energy battery system because it affects its performance, longevity, and safety. In this paper, we investigated the temperature of the 18650 Lithium Ion Battery Module used in a Energy Storage System (ESS) and the cooling method to minimize cell-to-cell temperature variation of battery module. For uniform temperature distribution within a battery module, the flow direction of the coolant in a battery module has been changed according to the time interval, and studied the effect of the cooling method on the temperature uniformity in a battery module which includes a number of battery cells. The experimental results show that bi-directional battery cooling method can effectively reduce the cell-to-cell temperature variation compared with the one-directional battery cooling. Furthermore, it is also found that bi-directional battery cooling can reduce the maximum temperature in a battery module.