• Title/Summary/Keyword: Power Modeling

Search Result 3,057, Processing Time 0.027 seconds

Electrical Modeling of Piezoelectric Elements and Efficient Driving Method

  • Park, Dongjin;Kim, Jintae;Lee, Youngsik;Koo, Gwanbon;Park, Youngbae
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.49-50
    • /
    • 2015
  • Piezoelectric elements are one of good candidates able to replace motors in various electronics devices. It is slim and compact and low power consumption compare to motors. Linear regulator or class-D amplifier are generally used for piezoelectric element driver, however, suffers from severe power consumption. In this paper, electrical modeling of piezoelectric element will be presented and switching losses on the driver due to the parasitic capacitance will be analyzed. And new ZVS full bridge converter with an inductor will be proposed so as to reduce the power losses.

  • PDF

Modeling, Control and Simulation of Microturbine Generator for Distributed Generation System in Smart Grid Application

  • Hong, Won-Pyo;Cho, Jae-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.7
    • /
    • pp.57-66
    • /
    • 2009
  • Microturbines system (MTS) are currently being deployed as small scale on-site distributed generators for microgrids and smart grids. In order to fully exploit DG potentialities, advanced integrated controls that include power electronics facilities, communication technologies and advanced modeling are required. Significant expectations are posed on gas microturbines that can be easily installed in large commercial and public buildings. Modeling, control, simulation of microturbine generator based distributed generation system in smart grid application of buildings for both grid-connected and islanding conditions are presented. It also incorporates modeling and simulation of MT with a speed control system of the MT-permanent magnet synchronous generator to keep the speed constant with load variation. Model and simulations are performed using MATLAB, Simulink and SimPowerSystem software package. The model is built from the dynamics of each part with their interconnections. This simplified model is a useful tool for studying the various operational aspects of MT and is also applicable with building cooling, heating and power (BCHP) systems

Numerical Modeling of Long-Term Behavior of Geosynthetic Reinforced Soil Wall used in Bridge Abutment (보강토 교대 옹벽의 장기 거동에 대한 수치 모델링)

  • Yoo, Chung-Sik
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.105-112
    • /
    • 2011
  • This paper presents the numerical modelling technique for modeling the time-dependent behavior of geosynthetic reinforced soil wall under a sustained load. The applicability of power law-based creep models for modeling the creep deformations of geogrid and reinforced soil was first examined. The modeling approach was then used to simulate the long-term performance of a geosynthetic reinforced soil wall used in a bridge abutment. The results indicated that the power law-based models can be effectively used for modelling the long term behavior of geosynthetic reinforced walls under sustained loading. In addition, it was shown that, when using creep deformation susceptible backfill soils, the abutment wall and the sill beam may experience deformations exceeding allowable limits. Practical implications of the findings from this study are discussed in great detail.

Modeling of Load Element for a Low Voltage DC Distribution System (저전압 DC 배전시스템 구성요소의 부하 모델링)

  • Gwon, Gi-Hyeon;Han, Joon;Oh, Yun-Sik;Kim, Eung-Sang;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.6
    • /
    • pp.113-121
    • /
    • 2014
  • At the end of the 19th century, a battle known as the War of the Currents was fought over how electricity would be generated, delivered, and utilized. In this day and age, there has been a growing interest in Green Growth policies as countermeasures against global warming. As a result of these policies, the use of new and renewable energy needed a power converter to replace fossil fuels has expanded. To reduce power consumption through high efficiency of conversion, Low Voltage DC (LVDC) distribution systems are suggested as an alternative. In a DC distribution system, DC loads are very efficient due to decrease the stages of power conversion. If the LVDC distribution system is adopted, not only DC load but also existing AC loads should be connected with LVDC system. Thus, the modeling of two loads is needed to analyze the DC distribution system. This paper, especially, is focused on the modeling of resistive load and electronic load including power electronic converters using ElectroMagnetic Transient Program (EMTP) software.

Development of FEMAXI-ATF for analyzing PCMI behavior of SiC cladded fuel under power ramp conditions

  • Yoshihiro Kubo;Akifumi Yamaji
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.846-854
    • /
    • 2024
  • FEMAXI-ATF is being developed for fuel performance modeling of SiC cladded UO2 fuel with focuses on modeling pellet-cladding mechanical interactions (PCMI). The code considers probability distributions of mechanical strengths of monolithic SiC (mSiC) and SiC fiber reinforced SiC matrix composite (SiC/SiC), while it models pseudo-ductility of SiC/SiC and propagation of cladding failures across the wall thickness direction in deterministic manner without explicitly modeling cracks based on finite element method in one-dimensional geometry. Some hypothetical BWR power ramp conditions were used to test sensitivities of different model parameters on the analyzed PCMI behavior. The results showed that propagation of the cladding failure could be modeled by appropriately reducing modulus of elasticities of the failed wall element, so that the mechanical load of the failed element could be re-distributed to other intact elements. The probability threshold for determination of the wall element failure did not have large influence on the predicted power at failure when the threshold was varied between 25 % and 75 %. The current study is still limited with respect to mechanistic modeling of SiC failure as it only models the propagation of the cladding wall element failure across the homogeneous continuum wall without considering generations and propagations of cracks.

Mathematical Consideration on PV Cell Modeling (PV cell modeling의 수학적 고찰)

  • Park, Hyeonah;Kim, Hyosung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.51-56
    • /
    • 2014
  • PV cell modeling is necessary both for software and hardware simulators in analyzing and testing the performance of PV generation systems. Unique I-V curve of a PV cell identifies its own characteristics by electrical equivalent model that is composed of diode constants ($I_o$, $v_t$), photo-generated current ($I_{ph}$), series resistance ($R_s$), and shunt resistance ($R_{sh}$). Photo-generated current can be easily estimated since it is proportional to irradiation level. However, other electrical parameters should be solved from the manufacturer's data sheet that is consisted with three remarkable operating points such as open circuit voltage ($V_{oc}$), short circuit current ($I_{sc}$), and maximum power voltage/current ($V_{MPP}/I_{MPP}$). This paper explains and analyzes mathematical process of a novel PV cell modeling algorithm that was proposed by the authors with the name of "K-algorithm".

The modeling for dc of a λ/4-shifted tunable three section DFB-LD characteristics considering spatial hole burning (SHB을 고려한 λ/4-shifted 3전극 가변파장 DFB-LD의 dc 특성 모델링)

  • Joun, Woo-Churl;Eom, Jin-Seob
    • Journal of Industrial Technology
    • /
    • v.16
    • /
    • pp.147-155
    • /
    • 1996
  • There is a considerable interest in tunable DFB-LD for their use in OFDM and coherent optical communications. In this paper, A modeling of ${\lambda}/4$-shifted tunable wavelength three electrode DFB-LD was performed considering the spatial hole burning within a laser diode cavity. The modeling will show design paramenters' requirement for high-speed and broad bandwidth lasers. The simulations of modeling prove that the continuous tuning range is about 3nm and the SMSR is about several dB. We showed that the optical power and carrier density distribution along z for several dc current with SHB. It was shown that prove that optical power and carrier density along cavity are changed and thismeans that modeling is correct.

  • PDF

A Study on Modeling and Identification for the Magnetic Bearing System (자기 베어링 시스템의 모델링 및 동정에 관한 연구)

  • Shim, S.H.;Kim, C.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.44-52
    • /
    • 2001
  • This paper considers a modeling and identification for the MIMO magnetic bearing system. To obtain the nominal plant transfer functions, we have experimented on the frequency response by a closed-loop identification method because the system is unstable essentially. We suggest a method of curve-fitting for obtaining the transfer function from the frequency responses by using the system's modeling structure and two controllers which are different from each other. From the frequency response results, we found the effects of coupling by opposing controllers. And using this effects and the system's modeling structure, we could obtain the transfer functions of which have the same modularized denominators.

  • PDF

Development of Photovoltaic Modeling and Generation System using PLECS in MATLAB (MATLAB 기반의 PLECS를 이용한 태양광 모델링 및 발전시스템 개발)

  • Choe, Gyu-Yeong;Kim, Jong-Soo;Lee, Young-Kuk;Lee, Byoung-Kuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2379-2384
    • /
    • 2009
  • In this paper, based on MATLAB which has characteristic that is simply applied to control algorithm and source modeling, photovoltaic modeling is implemented. Photovoltaic modeling is similarly performed PV array and simulated. Also, in order to output maximum power of PV, MPPT control is simulated. Moreover, simulation of converter is performed by means of PLECS (Piece wise Linear Electrical Simulation) which is easily made schematic of power electronics. Also, we compare simulation results and Sharp PV module and Suntech PV module. Finally, informative simulation of PV generation system is provided.

Stress Function-Based Interlaminar Stress Analysis of Composite Laminates under Complex Loading Conditions (응력함수에 기초한 복합 하중하의 복합재 적층판의 층간응력 해석)

  • Kim, H.S.;Kim, J.Y.;Kim, J.G.
    • Journal of Power System Engineering
    • /
    • v.14 no.3
    • /
    • pp.52-57
    • /
    • 2010
  • Interlaminar stresses near the free edges of composite laminates have been analyzed considering wall effects. Interface modeling of bonding layer was introduced to explain the wall effect. Using Lekhnitskii stress functions and the principle of complementary virtual work, the interlaminar stresses were obtained, which satisfied the traction free boundary conditions not only at the free edges, but also at the top and bottom surfaces of laminates. The interface modeling provides not singular stresses but concentrated finite interlaminar stresses. The significant amount of reductions of stresses at the free edge are observed compared to the results without interface modeling. The real stress state can be predicted accurately and the results demonstrate the usefulness of the proposed interface modeling for the strength design of composite laminates.