• Title/Summary/Keyword: Power Management Techniques

Search Result 264, Processing Time 0.039 seconds

A Fundamental Research for Technology area of SCM in Korean Nuclear Power Plant Construction (원전건설 공급망관리 기술영역 도출을 위한 기초연구)

  • Park, Hang-Soon;Kim, Woo-Jung;Chong, Young-Whan;Won, Seo-Kyung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.268-270
    • /
    • 2013
  • The construction project can be defined as a network combined between elements which are engineering, procurement, construction, start-up, and has a plenty of subjects and partners. For the successful project management in construction industry, it is necessary to adopt various management methods, such as lean production, information network system, SCM(Supply Chain Management), which can increase the efficiency of project management. During recent years, even though various management techniques have been applied, the SCM system has not formulated in construction industry. Especially, the Nuclear Power Plant Construction which requires high regulations of the safety and security has not applied SCM. Therefore, this study aimed to propose technology area of SCM in Korean Nuclear Power Plant Construction.

  • PDF

Optimal Relocating of Compensators for Real-Reactive Power Management in Distributed Systems

  • Chintam, Jagadeeswar Reddy;Geetha, V.;Mary, D.
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2145-2157
    • /
    • 2018
  • Congestion Management (CM) is an attractive research area in the electrical power transmission with the power compensation abilities. Reconfiguration and the Flexible Alternating Current Transmission Systems (FACTS) devices utilization relieve the congestion in transmission lines. The lack of optimal power (real and reactive) usage with the better transfer capability and minimum cost is still challenging issue in the CM. The prediction of suitable place for the energy resources to control the power flow is the major requirement for power handling scenario. This paper proposes the novel optimization principle to select the best location for the energy resources to achieve the real-reactive power compensation. The parameters estimation and the selection of values with the best fitness through the Symmetrical Distance Travelling Optimization (SDTO) algorithm establishes the proper controlling of optimal power flow in the transmission lines. The modified fitness function formulation based on the bus parameters, index estimation correspond to the optimal reactive power usage enhances the power transfer capability with the minimum cost. The comparative analysis between the proposed method with the existing power management techniques regarding the parameters of power loss, cost value, load power and energy loss confirms the effectiveness of proposed work in the distributed renewable energy systems.

Surge Immunity Performance Enhancement Techniques on Battery Management System (전지관리장치(BMS)의 서지내성 성능향상 기법)

  • Kim, Young-Sung;Rim, Seong-Jeong;Seo, Woohyun;Jung, Jeong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.196-200
    • /
    • 2015
  • The switching noise in the power electronics of the power conversion equipment (Power Conditioning System) for large energy storage devices are generated. Since the burst-level transient noise from being generated in the power system at a higher power change process influences the control circuit of the low voltage driver circuit. Noise may cause the malfunction of the control device even if no dielectric breakdown leads to a control circuit. To overcome this, this paper proposes the installation of an additional nano-surge protection device on the power supply DC output circuit of the battery management unit.

Challenges and Issues of Resource Allocation Techniques in Cloud Computing

  • Abid, Adnan;Manzoor, Muhammad Faraz;Farooq, Muhammad Shoaib;Farooq, Uzma;Hussain, Muzammil
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.7
    • /
    • pp.2815-2839
    • /
    • 2020
  • In a cloud computing paradigm, allocation of various virtualized ICT resources is a complex problem due to the presence of heterogeneous application (MapReduce, content delivery and networks web applications) workloads having contentious allocation requirements in terms of ICT resource capacities (resource utilization, execution time, response time, etc.). This task of resource allocation becomes more challenging due to finite available resources and increasing consumer demands. Therefore, many unique models and techniques have been proposed to allocate resources efficiently. However, there is no published research available in this domain that clearly address this research problem and provides research taxonomy for classification of resource allocation techniques including strategic, target resources, optimization, scheduling and power. Hence, the main aim of this paper is to identify open challenges faced by the cloud service provider related to allocation of resource such as servers, storage and networks in cloud computing. More than 70 articles, between year 2007 and 2020, related to resource allocation in cloud computing have been shortlisted through a structured mechanism and are reviewed under clearly defined objectives. Lastly, the evolution of research in resource allocation techniques has also been discussed along with salient future directions in this area.

Development of a Fully-Coupled, All States, All Hazards Level 2 PSA at Leibstadt Nuclear Power Plant

  • Zvoncek, Pavol;Nusbaumer, Olivier;Torri, Alfred
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.426-433
    • /
    • 2017
  • This paper describes the development process, the innovative techniques used and insights gained from the latest integrated, full scope, multistate Level 2 PSA analysis conducted at the Leibstadt Nuclear Power Plant (KKL), Switzerland. KKL is a modern single-unit General Electric Boiling Water Reactor (BWR/6) with Mark III Containment, and a power output of $3600MW_{th}/1200MW_e$, the highest among the five operating reactors in Switzerland. A Level 2 Probabilistic Safety Assessment (PSA) analyses accident phenomena in nuclear power plants, identifies ways in which radioactive releases from plants can occur and estimates release pathways, magnitude and frequency. This paper attempts to give an overview of the advanced modeling techniques that have been developed and implemented for the recent KKL Level 2 PSA update, with the aim of systematizing the analysis and modeling processes, as well as complying with the relatively prescriptive Swiss requirements for PSA. The analysis provides significant insights into the absolute and relative importances of risk contributors and accident prevention and mitigation measures. Thanks to several newly developed techniques and an integrated approach, the KKL Level 2 PSA report exhibits a high degree of reviewability and maintainability, and transparently highlights the most important risk contributors to Large Early Release Frequency (LERF) with respect to initiating events, components, operator actions or seismic component failure probabilities (fragilities).

A Comparative Analysis of Online Update Techniques for Battery Model Parameters Considering Complexity and Estimation Accuracy (배터리 모델 파라미터의 온라인 업데이트 기술 복잡도와 추정 정확도 비교 및 분석)

  • Han, Hae-Chan;Noh, Tae-Won;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.286-293
    • /
    • 2019
  • This study compares and analyzes online update techniques, which estimate the parameters of battery equivalent circuit models in real time. Online update techniques, which are based on extended Kalman filter and recursive least square methods, are constructed by considering the dynamic characteristics of batteries. The performance of the online update techniques is verified by simulation and experiments. Each online update technique is compared and analyzed in terms of complexity and accuracy to propose a suitable guide for selecting algorithms on various types of battery applications.

POWER LOAD MANAGEMENT FOR PEAK LOAD CLIPPING (POWER LOAD DIRECT CONTROL METHOD) (Peak부하(負荷) 억제(抑制)를 위한 전력부하관리(電力負荷管理) (전력부하(電力負荷) 직접제어방식(直接制御方式)))

  • Kim, Yeong-Han;Lee, Hyo-Sang;Kim, Jai-Young
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.246-250
    • /
    • 1989
  • Owing to the rapid development of economy and the higher living standard of people, electricity demands have growth and the peak load has been increased rapidly. To cope with this impacts and to reduce the cost of service,utilities are conserned about power load management program. This paper shows a scheme of power load control and the basic structure of direct load control system. And also radio control method using the public pager which is one of the best economical and serviceable method in techniques will be introduced briefly.

  • PDF

Innovative technologies for spent fuel safe management at Ignalina channel-type reactors

  • Babilas, Egidijus;Dokucajev, Pavel;Janulevicius, Darius;Markelov, Aleksej;Pabarcius, Raimondas;Rimkevicius, Sigitas;Uspuras, Eugenijus;Vaisnoras, Mindaugas
    • Nuclear Engineering and Technology
    • /
    • v.50 no.3
    • /
    • pp.504-511
    • /
    • 2018
  • In Lithuania, all spent nuclear fuel (SNF) resulted from the operation of the Ignalina Nuclear Power Plant (INPP), which had two Russian Acronym for "Channelized Large Power Reactor"-type reactors. After the final shutdown, the total amount of SNF at the INPP was approximately 22,000 fuel assemblies. All these assemblies will be stored for about 50 years and disposed of after that. The decision to shut down and decommission both reactors in Lithuania before termination of design period raises a significant challenge for the treatment of accumulated SNF. Therefore, various techniques and technologies for SNF management were developed and justified for that specific case, and a set of special equipment was installed at the INPP, the effectiveness of which was demonstrated during its operation. This article presents unique techniques related to the management of SNF adopted and commissioned at the INPP after its operation shutdown, namely fuel rod cladding leak tightness control system and special equipment for collection of possible spillage during handling of SNF assembly in the hot cell. The operational experience and measurement results of fuel rod cladding leak tightness control system are presented.

Effects of the Training Transfer Management on the Workers in Nuclear Power Plants

  • Kim, Seonsu;Luo, Meiling;Lee, Yong-Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.1
    • /
    • pp.49-58
    • /
    • 2014
  • Objective: The aim of this study is to enhance the efficiency of education and training through application and management of 'Transfer of Training' in nuclear power plants. Background: Despite the sophistication and standardization of job-related skills and techniques of workers, accidents/incidents keep taking place due to human errors and unsafe actions and behaviors, which translates into the necessity to review and examine the effectiveness and influence of education and training on the workers of nuclear power plants. Method/Results: This study drew the factors of 'Transfer of Training' through a review on the preceding studies and document research. In addition, through expert examination, this study explored the expected effects and possibility of application when managing the influencing factors of 'Transfer of Training' in nuclear power plants. And lastly, management priority order for nuclear power plants was drawn through an AHP analysis. Conclusion: Among the 'Transfer of Training' factors, the training design factor was the most important. In addition, the design of the training and transfer and goal setting showed a high degree of importance among the influencing factors. Application: The management of 'Transfer of Training' in nuclear power plants enhances the capability of workers and improves the operational integrity of nuclear power plants.

The Study on the Field test and Operational Method of a Direct Load Control System for Air conditioner (에어컨부하 직접제어시스템 실증시험 및 운용방안에 관한 연구)

  • Gang, Won-Gu;Kim, Chung-Hwan;Kim, Myong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2825-2827
    • /
    • 2000
  • In electric power industry. load balance has been one of the most fundamental and important management goals. Therefore. the strategy to achieve high quality load management now includes load balance besides the stabilization of electricity supply and quality management of electricity. Amongst many techniques of load management. direct load management has been actively studied and utilized to increase power facility and peak load suppression. Higher peak load situation is appeared during summer than during winter in Korea. and approximately 20% of the peak load is due to the load for air-conditioning. To cope with this peak load problem during summer KEPCO is performing a research project to develop a system to remotely control air-conditioning load using wireless communication. Currently, applicable facilities are limited to small-scale air-conditioning facility that has less than 2KW power capacity. This paper described the 1st year of efforts made in the study.

  • PDF