• Title/Summary/Keyword: Power Load Forecasting

Search Result 171, Processing Time 0.026 seconds

Short-term Electric Load Forecasting for Summer Season using Temperature Data (기온 데이터를 이용한 하계 단기전력수요예측)

  • Koo, Bon-gil;Kim, Hyoung-su;Lee, Heung-seok;Park, Juneho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1137-1144
    • /
    • 2015
  • Accurate and robust load forecasting model is very important in power system operation. In case of short-term electric load forecasting, its result is offered as an standard to decide a price of electricity and also can be used shaving peak. For this reason, various models have been developed to improve forecasting accuracy. In order to achieve accurate forecasting result for summer season, this paper proposes a forecasting model using corrected effective temperature based on Heat Index and CDH data as inputs. To do so, we establish polynomial that expressing relationship among CDH, load, temperature. After that, we estimate parameters that is multiplied to each of the terms using PSO algorithm. The forecasting results are compared to Holt-Winters and Artificial Neural Network. Proposing method shows more accurate by 1.018%, 0.269%, 0.132% than comparison groups, respectively.

Using Neural Networks to Forecast Price in Competitive Power Markets

  • Sedaghati, Alireza
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.271-274
    • /
    • 2005
  • Under competitive power markets, various long-term and short-term contracts based on spot price are used by producers and consumers. So an accurate forecasting for spot price allow market participants to develop bidding strategies in order to maximize their benefit. Artificial Neural Network is a powerful method in forecasting problem. In this paper we used Radial Basis Function(RBF) network to forecast spot price. To learn ANN, in addition to price history, we used some other effective inputs such as load level, fuel price, generation and transmission facilities situation. Results indicate that this forecasting method is accurate and useful.

  • PDF

Short-term Load Forecasting of Using Data refine for Temperature Characteristics at Jeju Island (온도특성에 대한 데이터 정제를 이용한 제주도의 단기 전력수요예측)

  • Kim, Ki-Su;Ryu, Gu-Hyun;Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.9
    • /
    • pp.1695-1699
    • /
    • 2009
  • This paper analyzed the characteristics of the demand of electric power in Jeju by year, day. For this analysis, this research used the correlation between the changes in the temperature and the demand of electric power in summer, and cleaned the data of the characteristics of the temperatures, using the coefficient of correlation as the standard. And it proposed the algorithm of forecasting the short-term electric power demand in Jeju, Therefore, in the case of summer, the data by each cleaned temperature section were used. Based on the data, this paper forecasted the short-term electric power demand in the exponential smoothing method. Through the forecast of the electric power demand, this paper verified the excellence of the proposed technique by comparing with the monthly report of Jeju power system operation result made by Korea Power Exchange-Jeju.

Development of a Weekly Load Forecasting Expert System (주간수요예측 전문가 시스템 개발)

  • Hwang, Kap-Ju;Kim, Kwang-Ho;Kim, Sung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.365-370
    • /
    • 1999
  • This paper describes the Weekly Load Forecasting Expert System(Named WLoFy) which was developed and implemented for Korea Electric Power Corporation(KEPCO). WLoFy was designed to provide user oriented features with a graphical user interface to improve the user interaction. The various forecasting models such as exponential smoothing, multiple regression, artificial nerual networks, rult-based model, and relative coefficient model also have been included in WLofy to increase the forecasting accuracy. The simulation based on historical data shows that the weekly forecasting results form WLoFy is an improvement when compared to the results from the conventional methods. Especially the forecasting accuracy on special days has been improved remakably.

  • PDF

A Study on the Building Energy Analysis and Algorithm of Energy Management System (건물 에너지 분석 및 에너지 관리 시스템 알고리즘에 관한 연구)

  • Han, Byung-Jo;Park, Ki-Kwang;Koo, Kyung-Wan;Yang, Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.505-510
    • /
    • 2009
  • In this paper, building energy analysis and energy cost of power stand up and demand control over the power proposed to reduce power demand. Through analysis of the load power demand special day were able to apply the pattern. In addition, the existing rate of change of load forecasting to reduce the large errors were not previously available data. And daily schedules and special day for considering the exponential smoothing methods were used. Previous year's special day and the previous day due to the uncertainty of the load and the model components were considered. The maximum demand power control simulation using the fuzzy control of power does not exceed the contract. Through simulation, the benefits of the proposed energy-saving techniques were demonstrated.

TEMPORAL CLASSIFICATION METHOD FOR FORECASTING LOAD PATTERNS FROM AMR DATA

  • Lee, Heon-Gyu;Shin, Jin-Ho;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.594-597
    • /
    • 2007
  • We present in this paper a novel mid and long term power load prediction method using temporal pattern mining from AMR (Automatic Meter Reading) data. Since the power load patterns have time-varying characteristic and very different patterns according to the hour, time, day and week and so on, it gives rise to the uninformative results if only traditional data mining is used. Also, research on data mining for analyzing electric load patterns focused on cluster analysis and classification methods. However despite the usefulness of rules that include temporal dimension and the fact that the AMR data has temporal attribute, the above methods were limited in static pattern extraction and did not consider temporal attributes. Therefore, we propose a new classification method for predicting power load patterns. The main tasks include clustering method and temporal classification method. Cluster analysis is used to create load pattern classes and the representative load profiles for each class. Next, the classification method uses representative load profiles to build a classifier able to assign different load patterns to the existing classes. The proposed classification method is the Calendar-based temporal mining and it discovers electric load patterns in multiple time granularities. Lastly, we show that the proposed method used AMR data and discovered more interest patterns.

  • PDF

Short-term Peak Load Forecasting using Regression Models and Neural Networks (회귀모형과 신경회로망 모형을 이용한 단기 최대전력수요예측)

  • Koh, Hee-Seog;Ji, Bong-Ho;Lee, Hyun-Moo;Lee, Chung-Sik;Lee, Chul-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.295-297
    • /
    • 2000
  • In case of power demand forecasting the most important problem is to deal with the load of special-days, Accordingly, this paper presents a method that forecasting special-days load with regression models and neural networks. Special-days load in summer season was forecasted by the multiple regression models using weekday change ratio Neural networks models uses pattern conversion ratio, and orthogonal polynomial models was directly forecasted using past special-days load data. forecasting result obtains % forecast error of about $1{\sim}2[%]$. Therefore, it is possible to forecast long and short special-days load.

  • PDF

Development of Distribution Load forecasting Algorithm for Distribution Planning System in KEPCO (한전 배전계획시스템을 위한 부하예측 알고리즘 개발)

  • Kwon Seong Chul;Park Chang Ho;Oh Jae Hyong
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.199-201
    • /
    • 2004
  • KEPCO, has been made a lot of efforts for computerization for distribution planning system since 1980's, And as a results, DISPLAN (Distribution PLANning System) for systematic and effective planning was developed in 2003 and is being used for feeder and substation planning of KEPCO branch office. In this paper the distribution load forecasting algorithm in DISPLAN is represented and the application was showed.

  • PDF

CLUSTER ANALYSIS FOR REGION ELECTRIC LOAD FORECASTING SYSTEM

  • Park, Hong-Kyu;Kim, Young-Il;Park, Jin-Hyoung;Ryu, Keun-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.591-593
    • /
    • 2007
  • This paper is to cluster the AMR (Automatic Meter Reading) data. The load survey system has been applied to record the power consumption of sampling the contract assortment in KEPRI AMR. The effect of the contract assortment change to the customer power consumption is determined by executing the clustering on the load survey results. We can supply the power to customer according to usage to the analysis cluster. The Korea a class of the electricity supply type is less than other country. Because of the Korea electricity markets exists one electricity provider. Need to further divide of electricity supply type for more efficient supply. We are found pattern that is different from supplied type to customer. Out experiment use the Clementine which data mining tools.

  • PDF

Short-term Peak Power Demand Forecasting using Model in Consideration of Weather Variable (기상 변수를 고려한 모델에 의한 단기 최대전력수요예측)

  • 고희석;이충식;최종규;지봉호
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.3
    • /
    • pp.73-78
    • /
    • 2001
  • BP neural network model and multiple-regression model were composed for forecasting the special-days load. Special-days load was forecasted using that neural network model made use of pattern conversion ratio and multiple-regression made use of weekday-change ratio. This methods identified the suitable as that special-days load of short and long term was forecasted with the weekly average percentage error of 1∼2[%] in the weekly peak load forecasting model using pattern conversion ratio. But this methods were hard with special-days load forecasting of summertime. therefore it was forecasted with the multiple-regression models. This models were used to the weekday-change ratio, and the temperature-humidity and discomfort-index as explanatory variable. This methods identified the suitable as that compared forecasting result of weekday load with forecasting result of special-days load because months average percentage error was alike. And, the fit of the presented forecast models using statistical tests had been proved. Big difficult problem of peak load forecasting had been solved that because identified the fit of the methods of special-days load forecasting in the paper presented.

  • PDF