• 제목/요약/키워드: Power Lift

검색결과 384건 처리시간 0.023초

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제15권3호
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.

부트스트랩 기법을 이용한 소음진동 스펙트럼 분석법 소개 (A Bootstrap Method for Analysis of Noise & Vibration Spectrum)

  • 전영두;박종찬;정의승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2008년도 춘계학술대회논문집
    • /
    • pp.185-188
    • /
    • 2008
  • This paper introduces the Bootstrap method for statistical analysis of noise and vibration spectrum in aeronautic and space fields. Generally, all components of a launch vehicle and its payloads are subjected to high intensive noise and vibration environment during the lift-off phase and the ascent phase through Mach =1 and Max Q. In order to verify their survivabilities against these severe vibroacoustic environments during qualification tests and acceptance tests, it is most important to estimate the proper upper limits of the environmental condition. Although NASA has typically utilized the Normal Tolerance Limit method in deriving these levels, the reference[1] says that the Bootstrap can be also an alternative method to estimate the maximum expected environments. In this paper, a general procedure of the Bootstrap method is summarized, and it is applied to analyze acceleration power spectral density functions, which were measured during acoustic test on the upper stage of KSLV-I.

  • PDF

공압용 더블챔버 로터에서 베인개수에 따른 성능특성에 관한 실험적연구 (An Experimental Study of Performance Characteristics on a Double Chamber Rotor Operated by High Pressure Air with Various Vanes)

  • 조종현;최상규;조수용
    • 한국유체기계학회 논문집
    • /
    • 제9권6호
    • /
    • pp.54-62
    • /
    • 2006
  • An experiment about performance characteristics is conducted on a double chamber vane-type rotor. Three different rotors, which have 6, 8 and 9 vanes, are applied to the driver and various lift holes at the rear plate are used to increase the effective vane height. The inner diameter of a double chamber cylinder is ${\phi}27mm$, and the length of the cylinder is 65 mm. The maximum offset length between the rotor outer surface and the cylinder inner surface is 4.5 mm. In this study, specific output torques and powers are measured, and also noise and vibration are measured at the real operating situation. The operating torque on the double chamber is increased to 17% compared to the operating torque obtained at the single chamber which has the same size. The experimental results of noise and vibration show that the operating sound and vibration are directly related to the operating power generated by the double chamber rotor.

비정상 후류를 지나는 터빈 동익 주위의 유동장 수치해석 (Numerical Analysis of a Turbine Rotor Cascade with Unsteady Passing Wakes)

  • 이은석
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.153-156
    • /
    • 2006
  • A turbine stage consists of a stator and rotor. A stator provides the required inlet flow conditions so that a rotor can produce the necessary power. Passing wakes generated at the trailing edge of a stator make an interaction with a rotor. In the present study, this interaction flow mechanism is investigated using the numerical analysis. In case of the large gap distance between the stator and rotor, the stator and rotor flow analysis can be separated. First, only the stator flow field is solved. Second, the rotor flow field is solved including the passing wake information from the stator analysis. The passing wake experiences the shearing as it approaches to the rotor leading edge. And it is chopped when it strikes the rotor body. After that, the chopped wakes becomes the prolongation as it goes downstream. Also, the aerodynamic characteristics with the variation of the gap distance between a stator and rotor was investigated. Pressure jumps due to the passing wakes result in the pressure and lift loss and it gets stronger with the closer gap distance. This unsteady effect proves to be directly related to the fatigue and noise in turbomachinery and this study would be helpful to investigate such fields.

  • PDF

Predicting Double-Blade Vertical Axis Wind Turbine Performance by a Quadruple-Multiple Streamtube Model

  • Hara, Yutaka;Kawamura, Takafumi;Akimoto, Hiromichi;Tanaka, Kenji;Nakamura, Takuju;Mizumukai, Kentaro
    • International Journal of Fluid Machinery and Systems
    • /
    • 제7권1호
    • /
    • pp.16-27
    • /
    • 2014
  • Double-blade vertical axis wind turbines (DB-VAWTs) can improve the self-starting performance of lift-driven VAWTs. We here propose the quadruple-multiple streamtube model (QMS), based on the blade element momentum (BEM) theory, for simulating DB-VAWT performance. Model validity is investigated by comparison to computational fluid dynamics (CFD) prediction for two kinds of two-dimensional DB-VAWT rotors for two rotor scales with three inner-outer radius ratios: 0.25, 0.5, and 0.75. The BEM-QMS model does not consider the effects of an inner rotor on the flow speed in the upwind half of the rotor, so we introduce a correction factor for this flow speed. The maximum power coefficient predicted by the modified BEM-QMS model for a DB-VAWT is thus closer to the CFD prediction.

플라스틱스퍼기어의 내구성향상에 관한 실험연구 (Experimental Study for the Durability Enhancement of Plastic Spur Gear)

  • 김충현;안효석;정태형
    • 대한기계학회논문집A
    • /
    • 제26권9호
    • /
    • pp.1914-1922
    • /
    • 2002
  • Operating test of power-transmission plastic spur gears were performed inspecting both characteristics of friction-wear and endurance, and suggesting endurance improvement method that either drills internal holes of tooth or inserts metallic pin in the internal hole of tooth and verifying this newly-provided method. In case of acetal gears, amount of friction-wear is observed to increase by development of plastic deformation and increase of tooth stiffness due to brittle material property of acetal. To the contrary, in case of nylon gears, suggested method is shown to drop down the tooth temperature for about 3∼10$^{\circ}C$ than original gear, thus amount of wear is reduced by over 30% and operating lift prolonged by more than 200%. Hence, suggested method is proved to be practically applicable to the plastic gears made by soft polymers such as Nylon.

이중선회류중의 난류확산화염의 안정화에 관한 연구 (A study on the stability of turbulent diffusion flame in double swirl flows)

  • 조용대;최병륜
    • 대한기계학회논문집
    • /
    • 제14권6호
    • /
    • pp.1669-1678
    • /
    • 1990
  • 본 연구에서는 다중선회연소기의 원리에 기초하여 연료와 산화제의 접촉면적 및 혼합속도를 증가시킴으로써 연소부하의 증대 및 연소효율의 향상효과를 얻을 수 있 는 새로운 연소방식을 개발하기 위한 시도로서 속도차가 있는 동축의 두 공기분류 사 이의 전단층에 기체연료를 분출시켜서 형성되는 난류확산 화염에 관하여 유동장의 성 상이 화염안정한계 및 화염구조에 미치는 영향을 조사하여 실용연소기의 유도장제어 및 고부하연소기설계를 위한 기초자료를 얻는데 목적이 있다.

유체-구조 상호작용을 적용한 튜브다발의 유체탄성불안정성 과도적 전산해석 (Multi-Physics Simulations of Fluidelastic Instability for Tube Bundles in Cross-Flow)

  • 이민형;김용찬
    • 대한기계학회논문집B
    • /
    • 제28권2호
    • /
    • pp.174-180
    • /
    • 2004
  • Failure of tube bundles due to excessive flow-induced vibrations continues to affect the performance of nuclear power plant Early experimental studies concentrated on rigid structures and later investigators dealt with elastic structures because of their importance in many engineering fields. On the other hand, much less numerical work has been carried out, because of the numerical complexity associated with the problem. Conventional approaches usually decoupled the flow solution from the structural problem. The present numerical study proposes the methodology in analyzing the fluidelastic instability occurring in tube bundles by coupling the Computational fluid Dynamics (C%) with the tube equation of motions. The motion of the structures is modeled by a spring-damper-mass system that allows transnational motion in two directions (a two-degree-of-freedom system). The fluid motion and the cylinder response are solved in an iterative way, so that the interaction between the fluid and the structure can be accounted for property. The aim of the present work is to predict the fluidelstic instability of tube bundles and the associated phenomena, such as the response of the cylinder, the unsteady lift and drag on the cylinder, the vortex shedding frequency.

차세대 고속열차(HEMU-400X)의 팬터그래프 시스템에 대한 공력특성 연구 (Experimental Studies on Aerodynamic Characteristics of Pantograph system for HEMU-400X)

  • 이영빈;노주현;곽민호;이재호;김규홍;이동호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.133-138
    • /
    • 2010
  • This paper describes on aerodynamic characteristics of pantograph system for Next generation high speed train(HEMU-400). The pantograph which supports electric power is located on the roof. Because of this, it generate high drag, severe acoustic noise and vibration which induced unstable flow due to complex configuration. Therefore, the design of high efficient pantograph needs to increase operational speed. In this research, wind tunnel tests were performed to design a high efficient pantograph system using 1/4 scaled model which were KTX-II pantograph, single arm pantograph and periscope type pantograph with square cylinder shape panhead and optimized shape panhead. For real operational condition, flow directions were adapted by rotation of pantograph. From this results of wind tunnel, it is checked that the pantograph with optimized panhead and single arm type or periscope type has better aerodynamic performance. In addition, lift control device and spoiler in pantograph were tested to investigate the validity of application.

  • PDF

EDISON_전산열유체를 활용한 풍력발전기 타워의 후류 불안정성 억제에 관한 수치연구 (NUMERICAL ANALYSIS FOR SUPPRESSING UNSTEADY WAKE FLOW ON WIND TURBINE TOWER USING EDISON_CFD)

  • 김수용;진도현;이근배;김종암
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.36-42
    • /
    • 2013
  • The performance of the wind turbine is determined by wind speed and unsteady flow characteristics. Unsteady wake flow causes not only the decline in performance but also structural problems of the wind turbine. In this paper, conceptual designs for the wind turbine tower are conducted to minimize unsteady wake flow. Numerical simulations are performed to inspect the shape effect of the tower. Through the installation of additional structures at the rear of the tower, the creation of Karman vortex is delayed properly and vortex interactions are reduced extremely, which enhance the stability of the wind turbine. From the comparative analysis of lift and drag coefficients for each structure, it is concluded that two streamwise tips with a splitter plate have the most improved aerodynamic characteristics in stabilizing wake flow.