• 제목/요약/키워드: Power Flow Equation

검색결과 285건 처리시간 0.025초

SEA에 기초를 둔 손실계수를 이용한 결합계수의 평가 (Coupling loss factor evaluation using loss factor based on the SEA)

  • 안병하;황선웅;김영종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.568-571
    • /
    • 1997
  • The overall aim of this paper is to determine coupling loss factor using loss factor and structural loss factor. For this purpose, two kinds of loss factor were adopted. One is loss factor of each sub structure, another is structural loss factor based on the complex welded or assembled structure. Using these two parameters, it is possible to derive the coupling loss factor which represent characteristic condition of SEA theory. Coupling loss factor of conjunction in complex structure was expressed as power balance equation. The derived equation for a coupling loss factor has been simplified on the assumption of one directional power flow between two sub structures. Using these conditions, it is possible to find the coupling loss factor equation. The comparison between theory of power transmission on conjunction and above equation, show a good agreement in simple beam structure. To check the effectiveness of above equation, it was adopted rotary compressor. Rotary compressor has three main conjunctions between shell and internal vibration part. This equation was applied to find out the optimum welding point with respect to reduce the noise propagation. It shows the effective tool to evaluate the coupling loss factor in complex structure.

  • PDF

Partition method of wall friction and interfacial drag force model for horizontal two-phase flows

  • Hibiki, Takashi;Jeong, Jae Jun
    • Nuclear Engineering and Technology
    • /
    • 제54권4호
    • /
    • pp.1495-1507
    • /
    • 2022
  • The improvement of thermal-hydraulic analysis techniques is essential to ensure the safety and reliability of nuclear power plants. The one-dimensional two-fluid model has been adopted in state-of-the-art thermal-hydraulic system codes. Current constitutive equations used in the system codes reach a mature level. Some exceptions are the partition method of wall friction in the momentum equation of the two-fluid model and the interfacial drag force model for a horizontal two-phase flow. This study is focused on deriving the partition method of wall friction in the momentum equation of the two-fluid model and modeling the interfacial drag force model for a horizontal bubbly flow. The one-dimensional momentum equation in the two-fluid model is derived from the local momentum equation. The derived one-dimensional momentum equation demonstrates that total wall friction should be apportioned to gas and liquid phases based on the phasic volume fraction, which is the same as that used in the SPACE code. The constitutive equations for the interfacial drag force are also identified. Based on the assessments, the Rassame-Hibiki correlation, Hibiki-Ishii correlation, Ishii-Zuber correlation, and Rassame-Hibiki correlation are recommended for computing the distribution parameter, interfacial area concentration, drag coefficient, and relative velocity covariance of a horizontal bubbly flow, respectively.

유량 보존 경계 조건을 적용한 커넥팅 로드 베어링의 성능 해석 (Analysis of Connecting Rod Bearings Using Mass-Conserving Boundary Condition)

  • 김병직;김경웅
    • Tribology and Lubricants
    • /
    • 제14권3호
    • /
    • pp.39-45
    • /
    • 1998
  • Reynolds equation, which describes behavior of fluid film in journal bearings, basically satisfies mass conservation. But, boundary conditions usually used with this equation, e.g. half Sommerfeld or Reynolds boundary conditions, cannot fulfill this natural law of conservation. In the case of connecting rod bearing, where applied load is dynamic and its magnitude is relatively large, such unrealistic boundary conditions have serious influence on calculation results, especially on lubricant flow rate or power disspation which are important parameters in thermal analysis. In this paper, mass-conserving boundary condition was applied in the finite element analysis of connecting rod bearings. Lubricant flow rate and power dissipation rate were calculated together with journal center locus, minimum film thickness and maxmium film pressure. These computation results were compared with those of the case of Reynolds boundary condition. Balance between inlet and outlet flow rate was well achieved in the case of mass-conserving boundary condition.

부하추종 운전시 보론 보충 수량 결정에 관한 연구 (A Study on Determination of Boron Makeup Flow Rate During the Load Follow Operation)

  • Song, Yong-Mann;Lee, Un-Chul;Chung, Chang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제20권1호
    • /
    • pp.1-8
    • /
    • 1988
  • 상업용 발전소의 가동시, 출력 변화에 의해 1차 계통 보론 농도의 변화가 요구되었을 때 CVCS보충 시스템에서의 보충 유량이 연속 방정식과 질량 평형 방정식을 이용하여 측정된다. 이를 위하여, 1차 계통, 가압기, 그리고 volume control tank가 각각 질량과 보론 농도를 가진 control volume으로 그리고 1차측과 가압기, CVCS를 연결하는 파이프들이 시간 지연 요소로 모델화 되었다. 14-2-6-2 (출력변화 100-50-100) 부하 추종운전의 경우(7호기 EOL에서)를 이 모델을 이용하여 계산하였다.

  • PDF

조류계산에 기초한 탁송요금 계산 (A Load Flow Based Approach to Transaction Cost Allocation in Transmission Network)

  • 박영문;임정욱;원종률;박종배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 D
    • /
    • pp.1149-1152
    • /
    • 1997
  • This paper describes a novel approach for allocating transmission costs among users of transmission services. In the suggested approach, the cost share of each participant is proportional to amount of its line flow. To develop individual user's impact, the line utilization factors of each participant are derived by power flow equations of all nodes (i.e., load-flow equations). To deal With the slack bus problem inherent in the conventional load-flow analysis more practically, a additional power supply/demand balance equation is incorporated. Although the developed allocation rule is basically similar to the existing MW-mile method in the aspect of embedded cost allocation, it does not require to get load flow solutions of each wheeling transaction when multiple transmission transactions are considered.

  • PDF

안전주입탱크의 재충수 단계 유동에 대한 이론해석 (Theoretical Study on the Flow of Refilling Stage in a Safety Injection Tank)

  • 박준상
    • 대한기계학회논문집B
    • /
    • 제41권10호
    • /
    • pp.675-683
    • /
    • 2017
  • 본 연구에서 원자력 발전용 비상노심냉각 장치인 안전주입탱크의 재충수 단계에 대한 유량에 대한 이론해석을 수행했다. 이론해석을 통해 재충수 단계 유동에 대한 이론 모형을 정립하고 재충수 단계에 대한 비선형 유량방정식을 구하고, 테일러 급수 전개법을 통해 근사유량방정식과 냉각수의 자유표면 높이변화와 유량변화를 예측할 수 있는 이론해들을 구했다. 기존연구에 나와 있는 실험과 비교하여 이론해의 유용성을 검증했다.

Vibration and stability of fluid conveying pipes with stochastic parameters

  • Ganesan, R.;Ramu, S. Anantha
    • Structural Engineering and Mechanics
    • /
    • 제3권4호
    • /
    • pp.313-324
    • /
    • 1995
  • Flexible cantilever pipes conveying fluids with high velocity are analysed for their dynamic response and stability behaviour. The Young's modulus and mass per unit length of the pipe material have a stochastic distribution. The stochastic fields, that model the fluctuations of Young's modulus and mass density are characterized through their respective means, variances and autocorrelation functions or their equivalent power spectral density functions. The stochastic non self-adjoint partial differential equation is solved for the moments of characteristic values, by treating the point fluctuations to be stochastic perturbations. The second-order statistics of vibration frequencies and mode shapes are obtained. The critical flow velocity is first evaluated using the averaged eigenvalue equation. Through the eigenvalue equation, the statistics of vibration frequencies are transformed to yield critical flow velocity statistics. Expressions for the bounds of eigenvalues are obtained, which in turn yield the corresponding bounds for critical flow velocities.

유동 모드 댐퍼에서의 Herschel-Bulkley 모델의 유용한 해법 (Useful Guide to Solve Herschel-Bulkley Model in a Flow Mode Damper)

  • 이덕영;박성태
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.784-787
    • /
    • 2003
  • Electrorheological(ER) and magnetorheological(MR) fluid-based dampers are typically analyzed using Bingham-plastic shear model under quasi-steady fully developed flow conditions. A Herschel-Bulkley constitutive shear flow relationship is that the linear shear stress vs. strain rate behavior of Bingham model is replaced by a shear stress that is assumed to be proportional to a power law of shear rate. This power is called the flow behavior index. Depending on the value of the flow behavior index number, varying degrees of post-yield shear thickening or thinning behavior can be analyzed. But it is not practical to analyze the damping force in a flow mode damper using Herschel-Bulkley model because it is needed to solve a polynomial equation. A useful guide is suggested to analyze the damping force in a damper using the Herschel-Bulkley model.

  • PDF

선로조류방정식 특성을 이용한 전압안정도 평가에 관한 연구 (A Study on Evaluating of Voltage Stability Using the Line Flow Equation.)

  • 송길영;김세영;김용하
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.797-799
    • /
    • 1996
  • This paper presents a simple method for evaluating of voltage stability using the line flow equation. Line flow equations($P_{ij}$, $Q_{ij}$) are comprised of state variable, $V_i$, ${\delta}_i$, $V_j$ and ${\delta}_j$, and line parameter, r and x. Using the feature of polar coordinate, these equations become one equation with two variables, $V_i$ and $V_j$. Moreover, if bus j is slack bus or generator bus, which is specified voltage magnitude, it becomes One equation with one variable $V_i$, that is, may be formulated with the second-order equation for $V_i^2$. Therefore, solutions are obtained with simple computation. Solutions obtained are used for evaluating of voltage stability through sensitivity analysis. Also, considering of reactive power source, method for evaluating the voltage stability is introduced. The proposed method was validated to 2-bus and IEEE 6-bus system.

  • PDF

전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어 (Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve)

  • 정동수;김형의;강이석
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.