• Title/Summary/Keyword: Power Flow Algorithm

Search Result 548, Processing Time 0.023 seconds

A New Approach to Short-term Price Forecast Strategy with an Artificial Neural Network Approach: Application to the Nord Pool

  • Kim, Mun-Kyeom
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1480-1491
    • /
    • 2015
  • In new deregulated electricity market, short-term price forecasting is key information for all market players. A better forecast of market-clearing price (MCP) helps market participants to strategically set up their bidding strategies for energy markets in the short-term. This paper presents a new prediction strategy to improve the need for more accurate short-term price forecasting tool at spot market using an artificial neural networks (ANNs). To build the forecasting ANN model, a three-layered feedforward neural network trained by the improved Levenberg-marquardt (LM) algorithm is used to forecast the locational marginal prices (LMPs). To accurately predict LMPs, actual power generation and load are considered as the input sets, and then the difference is used to predict price differences in the spot market. The proposed ANN model generalizes the relationship between the LMP in each area and the unconstrained MCP during the same period of time. The LMP calculation is iterated so that the capacity between the areas is maximized and the mechanism itself helps to relieve grid congestion. The addition of flow between the areas gives the LMPs a new equilibrium point, which is balanced when taking the transfer capacity into account, LMP forecasting is then possible. The proposed forecasting strategy is tested on the spot market of the Nord Pool. The validity, the efficiency, and effectiveness of the proposed approach are shown by comparing with time-series models

A Design of MGA-Pl Supplementary Controller in SVC for Power Oscillation Damping of HVDC Transmission System (초고압 직류송전 시스템의 전력 동요억제를 위한 정지형 무효전력 보상기에 MGA-PI 보조제어기 설계)

  • O, Tae-Gyu;Jeong, Hyeong-Hwan;Heo, Dong-Yeol;Lee, Jeong-Pil
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.7
    • /
    • pp.317-326
    • /
    • 2002
  • In this paper, a methodology for optimal PI supplementary controller using the modified genetic algorithm has been proposed to the oscillation damping in HDVC transmission system. These study processes are summarized as the formulation for load flow calculation in HVDC transmission system with SVC, the investigations on the basic control in HVDC system, the mathematical modeling for dynamic characteristics analyses, and the optimal design of MGA based PI controller generation the supplementary control signal of SVC. Its properties were verified through a series of computer simulations including dynamic stability. It means that the application of MGA-PI controller in HVDC transmission system can contribute the propriety to the improvement of the stability in HVDC transmission system and the design of MGA-OI controller has been proved indispensible when applied to HVDC transmission system.

Development of a Diagnostic Algorithm with Acoustic Emission Sensors and Neural networks for Check Valves

  • Seong, Seung-Hwan;Kim, Jung-Soo;Hur, Seop;Kim, Jung-Tak;Park, Won-Man
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.540-548
    • /
    • 2004
  • Check valve failure is one of the worst problems in nuclear power plants. Recently, many researches have been based on new technology using accelerometers and ultrasonic and magnetic flux detection have been carried out. Here, we have suggested a method that uses acoustic emission sensors for detecting the failures of check valves through measuring and analyzing backward leakage flow, a system that works without disassembling the check valve. For validating the suggested acoustic emission sensor methodology, we designed a hydraulic test loop with a check valve. We have assumed in this study that check valve failure is caused by disk wear or by the insertion of a foreign object. In addition, we have developed diagnostic algorithms by using a neural network model to identify the type and size of the failure in the check valve. Our results show that the proposed diagnostic algorithm with acoustic emission sensors is a good solution for identifying check valve failure without necessitating any disassembly work.

Wind-induced self-excited vibrations of a twin-deck bridge and the effects of gap-width

  • Qin, X.R.;Kwok, K.C.S.;Fok, C.H.;Hitchcock, P.A.;Xu, Y.L.
    • Wind and Structures
    • /
    • v.10 no.5
    • /
    • pp.463-479
    • /
    • 2007
  • A series of wind tunnel sectional model dynamic tests of a twin-deck bridge were conducted at the CLP Power Wind/Wave Tunnel Facility (WWTF) of The Hong Kong University of Science and Technology (HKUST) to investigate the effects of gap-width on the self-excited vibrations and the dynamic and aerodynamic characteristics of the bridge. Five 2.9 m long models with different gap-widths were fabricated and suspended in the wind tunnel to simulate a two-degrees-of-freedom (2DOF) bridge dynamic system, free to vibrate in both vertical and torsional directions. The mass, vertical frequency, and the torsional-to-vertical frequency ratio of the 2DOF systems were fixed to emphasize the effects of gap-width. A free-vibration test methodology was employed and the Eigensystem Realization Algorithm (ERA) was utilized to extract the eight flutter derivatives and the modal parameters from the coupled free-decay responses. The results of the zero gap-width configuration were in reasonable agreement with the theoretical values for an ideal thin flat plate in smooth flow and the published results of models with similar cross-sections, thus validating the experimental and analytical techniques utilized in this study. The methodology was further verified by the comparison between the measured and predicted free-decay responses. A comparison of results for different gap-widths revealed that variations of the gap-width mainly affect the torsional damping property, and that the configurations with greater gap-widths show a higher torsional damping ratio and hence stronger aerodynamic stability of the bridge.

Low-power FFT/IFFT Processor for Wireless LAN Modem (무선 랜 모뎀용 저전력 FFT/IFFT프로세서 설계)

  • Shin Kyung-Wook
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11A
    • /
    • pp.1263-1270
    • /
    • 2004
  • A low-power 64-point FFT/IFFT processor core is designed, which is an essential block in OFDM-based wireless LAM modems. The radix-2/418 DIF (Decimation-ln-Frequency) FFT algorithm is implemented using R2SDF (Radix-2 Single-path Delay Feedback) structure. Some design techniques for low-power implementation are considered from algorithm level to circuit level. Based on the analysis on infernal data flow, some unnecessary switching activities have been eliminated to minimize power dissipation. In circuit level, constant multipliers and complex-number multiplier in data-path are designed using truncation structure to reduce gate counts and power dissipation. The 64-point FFT/IFFT core designed in Verilog-HDL has about 28,100 gates, and timing simulation results using gate-level netlist with extracted SDF data show that it can safely operate up to 50-MHz@2.5-V, resulting that a 64-point FFT/IFFT can be computed every 1.3-${\mu}\textrm{s}$. The functionality of the core was fully verified by FPGA implementation using various test vectors. The average SQNR of over 50-dB is achieved, and the average power consumption is about 69.3-mW with 50-MHz@2.5-V.

A Study on Optimal Operation Method of Multiple Microgrid System Considering Line Flow Limits (선로제약을 고려한 복수개의 마이크로그리드 최적운영 기법에 관한 연구)

  • Park, Si-Na;An, Jeong-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.7
    • /
    • pp.258-264
    • /
    • 2018
  • This paper presents application of a differential search (DS) meta-heuristic optimization algorithm for optimal operation of a micro grid system. The DS algorithm simulates the Brownian-like random-walk movement used by an organism to migrate. The micro grid system consists of a wind turbine, a diesel generator, a fuel cell, and a photovoltaic system. The wind turbine generator is modeled by considering the characteristics of variable output. Optimization is aimed at minimizing the cost function of the system, including fuel costs and maximizing fuel efficiency to generate electric power. The simulation was applied to a micro grid system only. This study applies the DS algorithm with excellence and efficiency in terms of coding simplicity, fast convergence speed, and accuracy in the optimal operation of micro grids based on renewable energy resources, and we compared its optimum value to other algorithms to prove its superiority.

Time Slot Assignment Algorithm with Graph Coloring (그래프 채색에 의한 타임 슬롯 할당 알고리즘)

  • Kwon, Bo-Seob
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.52-60
    • /
    • 2008
  • A simple Time Division Multiplex(TDM) switching system which has been widely in satellite networks provides any size of bandwidth for a number of low bandwidth subscribers by allocating proper number of time slots in a frame. In this paper, we propose a new approach based on graph coloring model for efficient time slot assignment algorithm in contrast to network flow model in previous works. When the frame length of an initial matrix of time slot requests is 2's power, this matrix is divided into two matrices of time slot requests using binary divide and conquer method based on the graph coloring model. This process is continued until resulting matrices of time slot requests are of length one. While the most efficient algorithm proposed in the literature has time complexity of $O(N^{4.5})$, the time complexity of the proposed algorithm is $O(NLlog_2L)$, where N is the number of input/output links and L is the number of time slot alloted to each link in the frame.

A Free Agent Algorithm for Min-Cut Problem (최소절단 문제의 자유계약 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.4
    • /
    • pp.27-33
    • /
    • 2019
  • The min-cut problem that decides the maximum flow in a complex network flows from source(s) to sink(t) is known as a hard problem. The augmenting path algorithm divides into single path and decides the bottleneck point(edge), but the min-cut section to be decide additionally. This paper suggests O(n) time complexity heuristic greedy algorithm for the number of vertices n that applies free agent system in a pro-sports field. The free agent method assumes $N_G(S),N_G(T)$vertices among $v{\in}V{\backslash}\{s,t\}$to free agent players, and this players transfer into the team that suggest more annual income. As a result of various networks, this algorithm can be finds all of min-cut sections and min-cut value for whole cases.

Determination of the Optimal Operating Condition of Dual Mixed Refrigerant Cycle of LNG FPSO Topside Liquefaction Process (LNG FPSO Topside의 액화 공정에 대한 이중 혼합 냉매 사이클의 최적 운전 조건 결정)

  • Lee, Joon-Chae;Cha, Ju-Hwan;Roh, Myung-Il;Hwang, Ji-Hyun;Lee, Kyu-Yeul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.33-44
    • /
    • 2012
  • In this study, the optimal operating conditions for the dual mixed refrigerant(DMR) cycle were determined by considering the power efficiency. The DMR cycle consists of compressors, heat exchangers, seawater coolers, valves, phase separators, tees, and common headers, and the operating conditions include the equipment's flow rate, pressure, temperature, and refrigerant composition per flow. First, a mathematical model of the DMR cycle was formulated in this study by referring to the results of a past study that formulated a mathematical model of the single mixed refrigerant(SMR) cycle, which consists of compressors, heat exchangers, seawater coolers, and valves, and by considering as well the tees, phase separators, and common headers. Finally, in this study, the optimal operating conditions from the formulated mathematical model was obtained using a hybrid optimization method that consists of the genetic algorithm(GA) and sequential quadratic programming(SQP). Moreover, the required power at the obtained conditions was decreased by 1.4% compared with the corresponding value from the past relevant study of Venkatarathnam.

Three-Phase 4-Wire Isolated Wind Energy Conversion System Employing VSC with a T-Connected Transformer for Neutral Current Compensation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • This paper presents a voltage and frequency controller (VFC) for a 4-wire stand-alone wind energy conversion system (WECS) employing an asynchronous generator. The proposed VF con-troller consists of a three leg IGBT (Insulated Gate Bipolar Junction Transistor) based voltage source converter and a battery at its DC bus. The neutral terminal for the consumer loads is created using a T-connected transformer, which consists of only two single phase transformers. The control algorithm of the VF controller is developed for the bidirectional flow capability of the active power and reactive power control by which it controls the WECS voltage and frequency under different dynamic conditions, such as varying consumer loads and varying wind speeds. The WECS is modeled and simulated in MATLAB using Simulink and PSB toolboxes. Extensive results are presented to demonstrate the capability of the VF controller as a harmonic eliminator, a load balancer, a neutral current compensator as well as a voltage and frequency controller.