• Title/Summary/Keyword: Power Feature

Search Result 971, Processing Time 0.033 seconds

Organ Recognition in Ultrasound images Using Log Power Spectrum (로그 전력 스펙트럼을 이용한 초음파 영상에서의 장기인식)

  • 박수진;손재곤;김남철
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.9C
    • /
    • pp.876-883
    • /
    • 2003
  • In this paper, we propose an algorithm for organ recognition in ultrasound images using log power spectrum. The main procedure of the algorithm consists of feature extraction and feature classification. In the feature extraction, as a translation invariant feature, log power spectrum is used for extracting the information on echo of the organs tissue from a preprocessed input image. In the feature classification, Mahalanobis distance is used as a measure of the similarity between the feature of an input image and the representative feature of each class. Experimental results for real ultrasound images show that the proposed algorithm yields the improvement of maximum 30% recognition rate than the recognition algorithm using power spectrum and Euclidean distance, and results in better recognition rate of 10-40% than the recognition algorithm using weighted quefrency complex cepstrum.

Discriminative Power Feature Selection Method for Motor Imagery EEG Classification in Brain Computer Interface Systems

  • Yu, XinYang;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.13 no.1
    • /
    • pp.12-18
    • /
    • 2013
  • Motor imagery classification in electroencephalography (EEG)-based brain-computer interface (BCI) systems is an important research area. To simplify the complexity of the classification, selected power bands and electrode channels have been widely used to extract and select features from raw EEG signals, but there is still a loss in classification accuracy in the state-of- the-art approaches. To solve this problem, we propose a discriminative feature extraction algorithm based on power bands with principle component analysis (PCA). First, the raw EEG signals from the motor cortex area were filtered using a bandpass filter with ${\mu}$ and ${\beta}$ bands. This research considered the power bands within a 0.4 second epoch to select the optimal feature space region. Next, the total feature dimensions were reduced by PCA and transformed into a final feature vector set. The selected features were classified by applying a support vector machine (SVM). The proposed method was compared with a state-of-art power band feature and shown to improve classification accuracy.

Vulnerability Assessment of a Large Sized Power System Using Neural Network Considering Various Feature Extraction Methods

  • Haidar, Ahmed M. A;Mohamed, Azah;Hussian, Aini
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.167-176
    • /
    • 2008
  • Vulnerability assessment of power systems is important so as to determine their ability to continue to provide service in case of any unforeseen catastrophic contingency such as power system component failures, communication system failures, human operator error, and natural calamity. An approach towards the development of on-line power system vulnerability assessment is by means of using an artificial neural network(ANN), which is being used successfully in many areas of power systems because of its ability to handle the fusion of multiple sources of data and information. An important consideration when applying ANN in power system vulnerability assessment is the proper selection and dimension reduction of training features. This paper aims to investigate the effect of using various feature extraction methods on the performance of ANN as well as to evaluate and compare the efficiency of the proposed feature extraction method named as neural network weight extraction. For assessing vulnerability of power systems, a vulnerability index based on power system loss is used and considered as the ANN output. To illustrate the effectiveness of ANN considering various feature extraction methods for vulnerability assessment on a large sized power system, it is verified on the IEEE 300-bus test system.

Evaluations of AI-based malicious PowerShell detection with feature optimizations

  • Song, Jihyeon;Kim, Jungtae;Choi, Sunoh;Kim, Jonghyun;Kim, Ikkyun
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.549-560
    • /
    • 2021
  • Cyberattacks are often difficult to identify with traditional signature-based detection, because attackers continually find ways to bypass the detection methods. Therefore, researchers have introduced artificial intelligence (AI) technology for cybersecurity analysis to detect malicious PowerShell scripts. In this paper, we propose a feature optimization technique for AI-based approaches to enhance the accuracy of malicious PowerShell script detection. We statically analyze the PowerShell script and preprocess it with a method based on the tokens and abstract syntax tree (AST) for feature selection. Here, tokens and AST represent the vocabulary and structure of the PowerShell script, respectively. Performance evaluations with optimized features yield detection rates of 98% in both machine learning (ML) and deep learning (DL) experiments. Among them, the ML model with the 3-gram of selected five tokens and the DL model with experiments based on the AST 3-gram deliver the best performance.

Classification of Power Quality Disturbances Using Feature Vector Combination and Neural Networks (특징벡터 결합과 신경회로망을 이용한 전력외란 식별)

  • Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.671-674
    • /
    • 1997
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FIT, DWT(Discrete Wavelet Transform), and Fisher's criterion are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 10-class power quality disturbances are also provided.

  • PDF

Performance Evaluation of a Feature-Importance-based Feature Selection Method for Time Series Prediction

  • Hyun, Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2023
  • Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.

Fault Diagnosis of Wind Power Converters Based on Compressed Sensing Theory and Weight Constrained AdaBoost-SVM

  • Zheng, Xiao-Xia;Peng, Peng
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.443-453
    • /
    • 2019
  • As the core component of transmission systems, converters are very prone to failure. To improve the accuracy of fault diagnosis for wind power converters, a fault feature extraction method combined with a wavelet transform and compressed sensing theory is proposed. In addition, an improved AdaBoost-SVM is used to diagnose wind power converters. The three-phase output current signal is selected as the research object and is processed by the wavelet transform to reduce the signal noise. The wavelet approximation coefficients are dimensionality reduced to obtain measurement signals based on the theory of compressive sensing. A sparse vector is obtained by the orthogonal matching pursuit algorithm, and then the fault feature vector is extracted. The fault feature vectors are input to the improved AdaBoost-SVM classifier to realize fault diagnosis. Simulation results show that this method can effectively realize the fault diagnosis of the power transistors in converters and improve the precision of fault diagnosis.

Power Quality Disturbance Classification using Decision Fusion (결정결합 방법을 이용한 전력외란 신호의 식별)

  • 김기표;김병철;남상원
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.915-918
    • /
    • 2000
  • In this paper, we propose an efficient feature vector extraction and decision fusion methods for the automatic classification of power system disturbances. Here, FFT and WPT(wavelet packet transform) are und to extract an appropriate feature for classifying power quality disturbances with variable properties. In particular, the WPT can be utilized to develop an adaptable feature extraction algorithm using best basis selection. Furthermore. the extracted feature vectors are applied as input to the decision fusion system which combines the decisions of several classifiers having complementary performances, leading to improvement of the classification performance. Finally, the applicability of the proposed approach is demonstrated using some simulations results obtained by analyzing power quality disturbances data generated by using Matlab.

  • PDF

A Feature Vector Extraction Method For the Automatic Classification of Power Quality Disturbances (전력 외란 자동 식별을 위한 특징 벡터 추출 기법)

  • Lee, Chul-Ho;Lee, Jae-Sang;Cho, Kwan-Young;Chung, Ji-Hyun;Nam, Sang-Won
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.404-406
    • /
    • 1996
  • The objective of this paper is to present a new feature-vector extraction method for the automatic detection and classification of power quality(PQ) disturbances, where FFT, DWT(Discrete Wavelet Transform), and data compression are utilized to extract an appropriate feature vector. In particular, the proposed classifier consists of three parts: i.e., (i) automatic detection of PQ disturbances, where the wavelet transform and signal power estimation method are utilized to detect each disturbance, (ii) feature vector extraction from the detected disturbance, and (iii) automatic classification, where Multi-Layer Perceptron(MLP) is used to classify each disturbance from the corresponding extracted feature vector. To demonstrate the performance and applicability of the proposed classification algorithm, some test results obtained by analyzing 7-class power quality disturbances generated by the EMTP are also provided.

  • PDF

A New Islanding Detection Method Based on Feature Recognition Technology

  • Zheng, Xinxin;Xiao, Lan;Qin, Wenwen;Zhang, Qing
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.760-768
    • /
    • 2016
  • Three-phase grid-connected inverters are widely applied in the fields of new energy power generation, electric vehicles and so on. Islanding detection is necessary to ensure the stability and safety of such systems. In this paper, feature recognition technology is applied and a novel islanding detection method is proposed. It can identify the features of inverter systems. The theoretical values of these features are defined as codebooks. The difference between the actual value of a feature and the codebook is defined as the quantizing distortion. When islanding happens, the sum of the quantizing distortions exceeds the threshold value. Thus, islanding can be detected. The non-detection zone can be avoided by choosing reasonable features. To accelerate the speed of detection and to avoid miscalculation, an active islanding detection method based on feature recognition technology is given. Compared to the active frequency or phase drift methods, the proposed active method can reduce the distortion of grid-current when the inverter works normally. The principles of the islanding detection method based on the feature recognition technology and the improved active method are both analyzed in detail. An 18 kVA DSP-based three-phase inverter with the SVPWM control strategy has been established and tested. Simulation and experimental results verify the theoretical analysis.