Journal of Korea Society of Industrial Information Systems
/
v.18
no.3
/
pp.35-46
/
2013
In order to develop an accurate analytical model for domestic electricity demand forecasting, we propose a prediction method of the electric power demand pattern by combining SMO classification techniques and a dimension reduction conceptualized subspace clustering techniques suitable for high-dimensional data cluster analysis. In terms of electricity demand pattern prediction, hourly electricity load patterns and the demographic and geographic characteristics can be analyzed by integrating the wireless load monitoring data as well as sub-regional unit of census information. There are composed of a total of 18 characteristics clusters in the prediction result for the sub-regional demand pattern by using census information and power load of Seoul metropolitan area. The power demand pattern prediction accuracy was approximately 85%.
KIPS Transactions on Software and Data Engineering
/
v.11
no.7
/
pp.307-314
/
2022
Recently, researches using deep learning-based models are being actively conducted to replace statistical-based time series forecast techniques to predict electric power demand. The result of analyzing the researches shows that the performance of the LSTM-based prediction model is acceptable, but it is not sufficient for long-term regional-wide power demand prediction. In this paper, we propose a WaveNet deep learning model to predict electric power demand 24-hour-ahead with temperature data in order to achieve the prediction accuracy better than MAPE value of 2% which statistical-based time series forecast techniques can present. First of all, we illustrate a delated causal one-dimensional convolutional neural network architecture of WaveNet and the preprocessing mechanism of the input data of electric power demand and temperature. Second, we present the training process and walk forward validation with the modified WaveNet. The performance comparison results show that the prediction model with temperature data achieves MAPE value of 1.33%, which is better than MAPE Value (2.33%) of the same model without temperature data.
The Transactions of The Korean Institute of Electrical Engineers
/
v.58
no.1
/
pp.1-6
/
2009
The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.
This study analyze correlation between weekdays data and special days data of different power demand patterns, and builds a separate data set, and suggests ways to reduce power demand prediction error by using deep learning network suitable for each data set. In addition, we propose a method to improve the prediction rate by adding the environmental elements and the separating element to the meteorological element, which is a basic power demand prediction elements. The entire data predicted power demand using LSTM which is suitable for learning time series data, and the special day data predicted power demand using DNN. The experiment result show that the prediction rate is improved by adding prediction elements other than meteorological elements. The average RMSE of the entire dataset was 0.2597 for LSTM and 0.5474 for DNN, indicating that the LSTM showed a good prediction rate. The average RMSE of the special day data set was 0.2201 for DNN, indicating that the DNN had better prediction than LSTM. The MAPE of the LSTM of the whole data set was 2.74% and the MAPE of the special day was 3.07 %.
Journal of Korean Society of Disaster and Security
/
v.14
no.2
/
pp.35-42
/
2021
In order to produce electric vehicle demand forecasting information, which is an important element of the plan to expand charging facilities for electric vehicles, a model for predicting electric vehicle demand was proposed using Exponential Smoothing. In order to establish input data for the model, the monthly power demand of cities and counties was applied as independent variables, monthly electric vehicle charging stations, monthly electric vehicle charging stations, and monthly electric vehicle registration data. To verify the accuracy of the electric vehicle power demand prediction model, we compare the results of the statistical methods Exponential Smoothing (ETS) and ARIMA models with error rates of 12% and 21%, confirming that the ETS presented in this paper is 9% more accurate as electric vehicle power demand prediction models. It is expected that it will be used in terms of operation and management from planning to install charging stations for electric vehicles using this model in the future.
K-BEMS System was introduced to reduce peak load and to save total energy of the 120 buildings that KEPCO headquarter and branch offices use. K-BEMS system is composed of PV, battery, and hybrid PCS. In this system, ESS, PV, lighting is used to save building energy based on demand prediction. Currently, neural network technique for short past data is applied to demand prediction, and fixed scheduling method by operator for ESS charging/discharging is used. To enhance this system, KEPCO research institute has carried out this K-BEMS research project for 3 years since January 2016. As the result of this project, we developed new real-time highly reliable building demand prediction technique with error free and optimized automatic ESS charging/discharging technique. Through several field test, we can certify the developed algorithm performance successfully. So we will describe the details in this paper.
Kim, Soo-Hyun;Sun, Young-Ghyu;Lee, Dong-gu;Sim, Is-sac;Hwang, Yu-Min;Kim, Hyun-Soo;Kim, Hyung-suk;Kim, Jin-Young
Journal of IKEEE
/
v.23
no.1
/
pp.127-133
/
2019
Electric power demand forecasting is one of the important research areas for future smart grid introduction. However, It is difficult to predict because it is affected by many external factors. Traditional methods of forecasting power demand have been limited in making accurate prediction because they use raw power data. In this paper, a probability-based CRBM is proposed to solve the problem of electric power demand prediction using raw power data. The stochastic model is suitable to capture the probabilistic characteristics of electric power data. In order to compare the mid-term power demand forecasting performance of the proposed model, we compared the performance with Recurrent Neural Network(RNN). Performance comparison using electric power data provided by the University of Massachusetts showed that the proposed algorithm results in better performance in mid-term energy demand forecasting.
Kim, Young-Dal;Kim, Hyo-Jin;Kim, Dae-Sik;Kim, Jae-Hoon;Han, Sang-Ok
Proceedings of the KIEE Conference
/
2005.07e
/
pp.31-33
/
2005
The accelerating of industrial development causes electricity demand to increase. By that power equipments need high power, multi function and intelligence. Also consumers demand for guarantee power supplying of good quality and reasonable operating equipment. Also they require for reliance and stabilization of power facility. Therefore preventive maintenance of electric installation must be developed and improvement of domestic technical level is needed in the maintenance management of equipment. The diagnosis of trouble existence is technique that compares steady state with unusual condition, whereas the prediction technique makes a diagnosis of remaining equipments life. It is difficult for us to diagnose trouble existence of electric installation and to develop prediction method in building because of a wide scope for electric installation in building. And in this paper we will investigate diagnosis and prediction method for only switch part of electric installation in building.
An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.
Park, Kyung-Ho;Kim, Jae-Chul;Yun, Sang-Yun;Lee, Young-Suk;Park, Chang-Ho
Proceedings of the KIEE Conference
/
2002.07a
/
pp.530-532
/
2002
The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers. The peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.