• 제목/요약/키워드: Power Electric demand prediction

검색결과 38건 처리시간 0.025초

센서스 정보 및 전력 부하를 활용한 전력 수요 예측 (Forecasting Electric Power Demand Using Census Information and Electric Power Load)

  • 이헌규;신용호
    • 한국산업정보학회논문지
    • /
    • 제18권3호
    • /
    • pp.35-46
    • /
    • 2013
  • 국내 전력 수요량 예측을 위한 정확한 분석 모델을 개발하기 위하여 고차원 데이터 군집 분석에 적합한 차원 축소 개념의 부분공간 군집 기법과 SMO 분류 기법을 결합한 전력 수요 패턴 예측 방법을 제안하였다. 전력 수요 패턴 예측은 무선부하감시 데이터 뿐 아니라 소지역 단위의 센서스 정보를 통합하여 시간대별 전력 부하 패턴 분석과 인구통계학 및 지리학적 특성 분석이 가능하다. 서울지역 대상의 센서스 정보 및 전력 부하를 이용한 소지역 전력 수요 패턴 예측 결과 총 18개의 특성 군집을 구성하였으며, 전력 수요 패턴 예측 정확도는 약 85%를 보였다.

기온 데이터를 반영한 전력수요 예측 딥러닝 모델 (Electric Power Demand Prediction Using Deep Learning Model with Temperature Data)

  • 윤협상;정석봉
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권7호
    • /
    • pp.307-314
    • /
    • 2022
  • 최근 전력수요를 예측하기 위해 통계기반 시계열 분석 기법을 대체하기 위해 딥러닝 기법을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 전력수요 예측 연구 결과를 분석한 결과, LSTM 기반 예측 모델의 성능이 우수한 것으로 규명되었으나 장기간의 지역 범위 전력수요 예측에 대해 LSTM 기반 모델의 성능이 충분하지 않음을 확인할 수 있다. 본 연구에서는 기온 데이터를 반영하여 24시간 이전에 전력수요를 예측하는 WaveNet 기반 딥러닝 모델을 개발하여, 실제 사용하고 있는 통계적 시계열 예측 기법의 정확도(MAPE 값 2%)보다 우수한 예측 성능을 달성하는 모델을 개발하고자 한다. 먼저 WaveNet의 핵심 구조인 팽창인과 1차원 합성곱 신경망 구조를 소개하고, 전력수요와 기온 데이터를 입력값으로 모델에 주입하기 위한 데이터 전처리 과정을 제시한다. 다음으로, 개선된 WaveNet 모델을 학습하고 검증하는 방법을 제시한다. 성능 비교 결과, WaveNet 기반 모델에 기온 데이터를 반영한 방법은 전체 검증데이터에 대해 MAPE 값 1.33%를 달성하였고, 동일한 구조의 모델에서 기온 데이터를 반영하지 않는 것(MAPE 값 2.31%)보다 우수한 전력수요 예측 결과를 나타내고 있음을 확인할 수 있다.

수요측 단기 전력소비패턴 예측을 위한 평균 및 시계열 분석방법 연구 (A Study on Forecasting Method for a Short-Term Demand Forecasting of Customer's Electric Demand)

  • 고종민;양일권;송재주
    • 전기학회논문지
    • /
    • 제58권1호
    • /
    • pp.1-6
    • /
    • 2009
  • The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.

특수일 분리와 예측요소 확장을 이용한 전력수요 예측 딥 러닝 모델 (Deep Learning Model for Electric Power Demand Prediction Using Special Day Separation and Prediction Elements Extention)

  • 박준호;신동하;김창복
    • 한국항행학회논문지
    • /
    • 제21권4호
    • /
    • pp.365-370
    • /
    • 2017
  • 본 연구는 전력수요 패턴이 다른 평일과 특수일 데이터가 가지는 상관관계를 분석하여, 별도의 데이터 셋을 구축하고, 각 데이터 셋에 적합한 딥 러닝 네트워크를 이용하여, 전력수요예측 오차를 감소하는 방안을 제시하였다. 또한, 기본적인 전력수요 예측요소인 기상요소에 환경요소, 구분요소 등 다양한 예측요소를 추가하여 예측율을 향상하는 방안을 제시하였다. 전체데이터는 시계열 데이터 학습에 적합한 LSTM을 이용하여 전력수요예측을 하였으며, 특수일 데이터는 DNN을 이용하여 전력수요예측을 하였다. 실험결과 기상요소 이외의 예측요소 추가를 통해 예측율이 향상되었다. 전체 데이터 셋의 평균 RMSE는 LSTM이 0.2597이며, DNN이 0.5474로 LSTM이 우수한 예측율을 보였다. 특수일 데이터 셋의 평균 RMSE는 0.2201로 DNN이 LSTM보다 우수한 예측율을 보였다. 또한, 전체 데이터 셋의 LSTM의 MAPE는 2.74 %이며, 특수 일의 MAPE는 3.07 %를 나타냈다.

Exponential Smoothing기법을 이용한 전기자동차 전력 수요량 예측에 관한 연구 (A Study on the Prediction of Power Demand for Electric Vehicles Using Exponential Smoothing Techniques)

  • 이병현;정세진;김병식
    • 한국방재안전학회논문집
    • /
    • 제14권2호
    • /
    • pp.35-42
    • /
    • 2021
  • 본 논문은 전기자동차 충전시설 확충계획에 중요한 요소인 전기자동차 전력 수요량 예측정보를 생산하기 위하여 Exponential Smoothing를 이용하여 전력 수요량 예측 모형을 제안하였다. 모형의 입력자료 구축을 위하여 종속변수로 월별 시군구 전력수요량을 독립변수로 월별 시군구 충전소 보급대수, 월별 시군구 전기자동차 충전소 충전 횟수, 월별 전기자동차 등록대수 자료를 월 단위로 수집하고 수집된 7년간 자료 중 4년간 자료를 학습기간으로 3년간 자료를 검증 기간으로 적용하였다. 전기자동차 전력 수요량 예측 모형의 정확성을 검증하기위하여 통계적 방법인 Exponential Smoothing(ETS), ARIMA모형의 결과와 비교한 결과 ETS, ARIMA 각각의 오차율은 12%, 21%로 본 논문에서 제시한 ETS가 9% 더 정확하게 분석되었으며, 전기자동차 전력 수요량 예측 모형으로써 적합함을 확인하였다. 향후 이 모형을 이용한 전기자동차 충전소 설치 계획부터 운영관리 측면에서 활용될 것으로 기대한다.

머신러닝기반 확률론적 실시간 건물에너지 수요예측 및 BESS충방전 기법 (Stochastic Real-time Demand Prediction for Building and Charging and Discharging Technique of ESS Based on Machine-Learning)

  • 양승권;송택호
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.157-163
    • /
    • 2019
  • 현재까지 피크완화 및 에너지 절감을 위해 한국전력공사 120여개 사옥에 K-BEMS (KEPCO Building Energy Management System)가 운영 중이다. 이 시스템은 PV, PCS, BESS, EMS 등으로 구성되어 있으며 건물에너지 수요예측을 기반으로 BESS, PV 등을 활용하여 에너지 관리를 도모하고 있다. 이 시스템은 단기 과거데이터에 신경망기법을 단순 적용하여 수요를 예측함에 따라 예측 정확도가 높지 않고 운영자 수작업을 통한 BESS 충방전으로 피크 저감이 곤란하며 운영 경제성 제고가 어려운 실정이다. 이러한 문제를 해결하기 위해 전력연구원에서는 2016년부터 3년간 연구과제를 수행하였는데 이를 통해 에러를 최소화하며 높은 신뢰도를 가지는 실시간 수요예측기법과 이에 기반한 BESS충방전 최적화 자동화 기술 개발, 성능을 검증하였기에 이를 본 논문에서 소개하고자 한다.

조건적 제한된 볼츠만머신을 이용한 중기 전력 수요 예측 (Mid-Term Energy Demand Forecasting Using Conditional Restricted Boltzmann Machine)

  • 김수현;선영규;이동구;심이삭;황유민;김현수;김형석;김진영
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.127-133
    • /
    • 2019
  • 미래에 스마트 그리드 도입을 위해 전력수요예측은 중요한 연구 분야 중 하나이다. 하지만 전력데이터는 많은 외부적 요소들에 영향을 받기 때문에 예측하기 어렵다. 기존의 전력수요예측 방법들은 가공되지 않은 전력데이터를 그대로 이용하기 때문에 정확도 높은 예측을 하는데 한계가 있어왔다. 본 논문에서는 가공되지 않은 전력데이터를 이용하는 전력수요예측의 문제를 해결하기 위해 확률기반 학습알고리즘을 제안한다. 확률 모델은 전력데이터의 확률적 특성을 분석하기에 적합하다. 제안한 모델의 중기 전력수요예측 성능을 비교하기 위해 신경망 네트워크 중 하나인 순환신경망과 성능 비교를 해보았다. 매사추세츠 대학에서 제공한 전력데이터를 이용하여 성능 비교를 한 결과 본 논문에서 제안한 확률기반 학습알고리즘이 중기 수요예측에 더 좋은 성능을 나타냄을 확인하였다.

건축물 내 전기설비 이상 유무 진단 및 예측기법 개발 (Diagnosis of a trouble existence and development of prediction method for electrical equipment inside a building)

  • 김영달;김효진;김대식;김재훈;한상옥
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 전기설비
    • /
    • pp.31-33
    • /
    • 2005
  • The accelerating of industrial development causes electricity demand to increase. By that power equipments need high power, multi function and intelligence. Also consumers demand for guarantee power supplying of good quality and reasonable operating equipment. Also they require for reliance and stabilization of power facility. Therefore preventive maintenance of electric installation must be developed and improvement of domestic technical level is needed in the maintenance management of equipment. The diagnosis of trouble existence is technique that compares steady state with unusual condition, whereas the prediction technique makes a diagnosis of remaining equipments life. It is difficult for us to diagnose trouble existence of electric installation and to develop prediction method in building because of a wide scope for electric installation in building. And in this paper we will investigate diagnosis and prediction method for only switch part of electric installation in building.

  • PDF

New Prediction of the Number of Charging Electric Vehicles Using Transformation Matrix and Monte-Carlo Method

  • Go, Hyo-Sang;Ryu, Joon-Hyoung;Kim, Jae-won;Kim, Gil-Dong;Kim, Chul-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권1호
    • /
    • pp.451-458
    • /
    • 2017
  • An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.

동력용 배전 변압기의 최대부하 예측 개선 방안에 관한 연구 (A Study on the Peak Load Prediction for Molter-use Distribution Transformer)

  • 박경호;김재철;윤상윤;이영석;박창호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.530-532
    • /
    • 2002
  • The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers. The peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.

  • PDF