국내 전력 수요량 예측을 위한 정확한 분석 모델을 개발하기 위하여 고차원 데이터 군집 분석에 적합한 차원 축소 개념의 부분공간 군집 기법과 SMO 분류 기법을 결합한 전력 수요 패턴 예측 방법을 제안하였다. 전력 수요 패턴 예측은 무선부하감시 데이터 뿐 아니라 소지역 단위의 센서스 정보를 통합하여 시간대별 전력 부하 패턴 분석과 인구통계학 및 지리학적 특성 분석이 가능하다. 서울지역 대상의 센서스 정보 및 전력 부하를 이용한 소지역 전력 수요 패턴 예측 결과 총 18개의 특성 군집을 구성하였으며, 전력 수요 패턴 예측 정확도는 약 85%를 보였다.
최근 전력수요를 예측하기 위해 통계기반 시계열 분석 기법을 대체하기 위해 딥러닝 기법을 활용한 연구가 활발히 진행되고 있다. 딥러닝 기반 전력수요 예측 연구 결과를 분석한 결과, LSTM 기반 예측 모델의 성능이 우수한 것으로 규명되었으나 장기간의 지역 범위 전력수요 예측에 대해 LSTM 기반 모델의 성능이 충분하지 않음을 확인할 수 있다. 본 연구에서는 기온 데이터를 반영하여 24시간 이전에 전력수요를 예측하는 WaveNet 기반 딥러닝 모델을 개발하여, 실제 사용하고 있는 통계적 시계열 예측 기법의 정확도(MAPE 값 2%)보다 우수한 예측 성능을 달성하는 모델을 개발하고자 한다. 먼저 WaveNet의 핵심 구조인 팽창인과 1차원 합성곱 신경망 구조를 소개하고, 전력수요와 기온 데이터를 입력값으로 모델에 주입하기 위한 데이터 전처리 과정을 제시한다. 다음으로, 개선된 WaveNet 모델을 학습하고 검증하는 방법을 제시한다. 성능 비교 결과, WaveNet 기반 모델에 기온 데이터를 반영한 방법은 전체 검증데이터에 대해 MAPE 값 1.33%를 달성하였고, 동일한 구조의 모델에서 기온 데이터를 반영하지 않는 것(MAPE 값 2.31%)보다 우수한 전력수요 예측 결과를 나타내고 있음을 확인할 수 있다.
The traditional demand prediction was based on the technique wherein electric power corporations made monthly or seasonal estimation of electric power consumption for each area and subscription type for the next one or two years to consider both seasonally generated and local consumed amounts. Note, however, that techniques such as pricing, power generation plan, or sales strategy establishment were used by corporations without considering the production, comparison, and analysis techniques of the predicted consumption to enable efficient power consumption on the actual demand side. In this paper, to calculate the predicted value of electric power consumption on a short-term basis (15 minutes) according to the amount of electric power actually consumed for 15 minutes on the demand side, we performed comparison and analysis by applying a 15-minute interval prediction technique to the average and that to the time series analysis to show how they were made and what we obtained from the simulations.
본 연구는 전력수요 패턴이 다른 평일과 특수일 데이터가 가지는 상관관계를 분석하여, 별도의 데이터 셋을 구축하고, 각 데이터 셋에 적합한 딥 러닝 네트워크를 이용하여, 전력수요예측 오차를 감소하는 방안을 제시하였다. 또한, 기본적인 전력수요 예측요소인 기상요소에 환경요소, 구분요소 등 다양한 예측요소를 추가하여 예측율을 향상하는 방안을 제시하였다. 전체데이터는 시계열 데이터 학습에 적합한 LSTM을 이용하여 전력수요예측을 하였으며, 특수일 데이터는 DNN을 이용하여 전력수요예측을 하였다. 실험결과 기상요소 이외의 예측요소 추가를 통해 예측율이 향상되었다. 전체 데이터 셋의 평균 RMSE는 LSTM이 0.2597이며, DNN이 0.5474로 LSTM이 우수한 예측율을 보였다. 특수일 데이터 셋의 평균 RMSE는 0.2201로 DNN이 LSTM보다 우수한 예측율을 보였다. 또한, 전체 데이터 셋의 LSTM의 MAPE는 2.74 %이며, 특수 일의 MAPE는 3.07 %를 나타냈다.
본 논문은 전기자동차 충전시설 확충계획에 중요한 요소인 전기자동차 전력 수요량 예측정보를 생산하기 위하여 Exponential Smoothing를 이용하여 전력 수요량 예측 모형을 제안하였다. 모형의 입력자료 구축을 위하여 종속변수로 월별 시군구 전력수요량을 독립변수로 월별 시군구 충전소 보급대수, 월별 시군구 전기자동차 충전소 충전 횟수, 월별 전기자동차 등록대수 자료를 월 단위로 수집하고 수집된 7년간 자료 중 4년간 자료를 학습기간으로 3년간 자료를 검증 기간으로 적용하였다. 전기자동차 전력 수요량 예측 모형의 정확성을 검증하기위하여 통계적 방법인 Exponential Smoothing(ETS), ARIMA모형의 결과와 비교한 결과 ETS, ARIMA 각각의 오차율은 12%, 21%로 본 논문에서 제시한 ETS가 9% 더 정확하게 분석되었으며, 전기자동차 전력 수요량 예측 모형으로써 적합함을 확인하였다. 향후 이 모형을 이용한 전기자동차 충전소 설치 계획부터 운영관리 측면에서 활용될 것으로 기대한다.
현재까지 피크완화 및 에너지 절감을 위해 한국전력공사 120여개 사옥에 K-BEMS (KEPCO Building Energy Management System)가 운영 중이다. 이 시스템은 PV, PCS, BESS, EMS 등으로 구성되어 있으며 건물에너지 수요예측을 기반으로 BESS, PV 등을 활용하여 에너지 관리를 도모하고 있다. 이 시스템은 단기 과거데이터에 신경망기법을 단순 적용하여 수요를 예측함에 따라 예측 정확도가 높지 않고 운영자 수작업을 통한 BESS 충방전으로 피크 저감이 곤란하며 운영 경제성 제고가 어려운 실정이다. 이러한 문제를 해결하기 위해 전력연구원에서는 2016년부터 3년간 연구과제를 수행하였는데 이를 통해 에러를 최소화하며 높은 신뢰도를 가지는 실시간 수요예측기법과 이에 기반한 BESS충방전 최적화 자동화 기술 개발, 성능을 검증하였기에 이를 본 논문에서 소개하고자 한다.
미래에 스마트 그리드 도입을 위해 전력수요예측은 중요한 연구 분야 중 하나이다. 하지만 전력데이터는 많은 외부적 요소들에 영향을 받기 때문에 예측하기 어렵다. 기존의 전력수요예측 방법들은 가공되지 않은 전력데이터를 그대로 이용하기 때문에 정확도 높은 예측을 하는데 한계가 있어왔다. 본 논문에서는 가공되지 않은 전력데이터를 이용하는 전력수요예측의 문제를 해결하기 위해 확률기반 학습알고리즘을 제안한다. 확률 모델은 전력데이터의 확률적 특성을 분석하기에 적합하다. 제안한 모델의 중기 전력수요예측 성능을 비교하기 위해 신경망 네트워크 중 하나인 순환신경망과 성능 비교를 해보았다. 매사추세츠 대학에서 제공한 전력데이터를 이용하여 성능 비교를 한 결과 본 논문에서 제안한 확률기반 학습알고리즘이 중기 수요예측에 더 좋은 성능을 나타냄을 확인하였다.
The accelerating of industrial development causes electricity demand to increase. By that power equipments need high power, multi function and intelligence. Also consumers demand for guarantee power supplying of good quality and reasonable operating equipment. Also they require for reliance and stabilization of power facility. Therefore preventive maintenance of electric installation must be developed and improvement of domestic technical level is needed in the maintenance management of equipment. The diagnosis of trouble existence is technique that compares steady state with unusual condition, whereas the prediction technique makes a diagnosis of remaining equipments life. It is difficult for us to diagnose trouble existence of electric installation and to develop prediction method in building because of a wide scope for electric installation in building. And in this paper we will investigate diagnosis and prediction method for only switch part of electric installation in building.
An Electric Vehicle (EV) is operated with the electric energy of a battery in place of conventional fossil fuels. Thus, a suitable charging infrastructure must be provided to expand the use of electric vehicles. Because the battery of an EV must be charged to operate the EV, expanding the number of EVs will have a significant influence on the power supply and demand. Therefore, to maintain the balance of power supply and demand, it is important to be able to predict the numbers of charging EVs and monitor the events that occur in the distribution system. In this paper, we predict the hourly charging rate of electric vehicles using transformation matrix, which can describe all behaviors such as resting, charging, and driving of the EVs. Simulation with transformation matrix in a specific region provides statistical results using the Monte-Carlo Method.
The contracted electric power and the demand factor of customers are used to predict the peak load in distribution transformers. The conventional demand factor was determined more than ten years ago. The contracted electric power and power demand have been increased. Therefore, we need to prepare the novel demand factor that appropriates at present. In this paper, we modify the demand factor to improve the peak load prediction of distribution transformers. To modify the demand factor, we utilize the 169 data acquisition devices for sample distribution transformers. The peak load currents were measured by the case studies using the actual load data, through which we verified that the proposed demand factors were correct than the conventional factors. A newly demand factor will be used to predict the peak load of distribution transformers.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.