• Title/Summary/Keyword: Power Distribution Systems

Search Result 1,303, Processing Time 0.032 seconds

Research and Analysis of Difference Hybrid DC Circuit Breaker Topologies for MVDC Distribution System (MVDC 배전시스템에서 다양한 복합형 직류 차단기의 토폴로지 연구 및 분석)

  • Go, Yu-Ran;Min, Myung-Hwan;An, Tae-Pung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.6
    • /
    • pp.503-510
    • /
    • 2020
  • The importance of DC breakers as key protection equipment is increasing in accordance with growing concerns on MVDC distribution network systems without DC/AC conversion. Different from the situation in AC systems, no natural zero-crossing point exists in DC systems. Thus, DC breaker technology is more difficult than AC breaker technology. The solutions for DC breakers can be divided into three types: mechanical, power electronics, and hybrid. In this study, the operating principles of several topologies of hybrid circuit breakers and that of the proposed DC breaker are analyzed and simulated by sorting two types. The breakers are compared in terms of the type and number of semiconductors, volume, power loss, auxiliary components, isolation, and other aspects. The advantages and disadvantages of the breakers are also analyzed.

Optimal Configuration of Distribution System considering the Economic Operations of a Microgrid

  • Moon, Hyun-Ho;Lee, Jong-Joo;Choi, Sang-Yule;Shin, Myong-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.7
    • /
    • pp.20-25
    • /
    • 2010
  • With the diversification of distribution facilities, existing distributed generation can be subdivided into Microgrids, which are smaller units for application. These Microgrids, subdivided as such and connected to distribution systems, should operate under driving plans that will ensure their economic efficiency and, accordingly, the configuration of those distribution systems that include Microgrids should also be changed. The perception of the necessity to secure the economic efficiency of distribution systems is gradually increasing and studies intended to assess the economic efficiency of Microgrids and Smartgrids are ongoing. In this paper, the power generation capacity of an economically operative Microgrid was calculated using the MonteCarlo simulation, which is a method based on the probability theory considering the power generation cost of Microgrids linked with power supply systems and reverse sales costs, etc., and an optimum distribution systems was configured based on the results of these calculation.

Lightning Surges Transferred to Low-voltage AC Power Lines through Distribution Transformers (배전용 변압기를 통하여 저압 전원선으로 전파되는 뇌서지)

  • 이복희;이동문;이수봉
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.4
    • /
    • pp.94-99
    • /
    • 2003
  • A strong need to improve the quality of electric power is increased because of increasing use of the sensitive and small-sized electronic devices. The transient overvoltages on low-voltage AC power distribution systems are induced by direct or indirect lightning return strokes, and they can cause damage and/or malfunction of the utility systems for home automation, office automation and factory automation as well as medical equipment. The behaviors of lightning overvoltages transferred through the transformer to the low voltage AC power distribution systems were experimentally investigated using a Marx generator. The surge voltages in low-voltage ac power systems are rarely limited by the application of the surge arrester to the primary side of distribution transformer and a custom service ground.

The Study of the Automation Systems using Satellite Communications (위성통신을 이용한 자동화 감시 시스템 구축 연구)

  • Kim, Myong-Soo;Hyun, Duck-Hwa;Cho, Seon-Ku;Kim, Choong-Hwan
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2540-2542
    • /
    • 2002
  • In recent years, it is a worldwide trend that many power utilities focus their attention to employ up-to-date communication technology to the automation of their power plants and distribution systems. Automation Systems in Korea was installed using twisted pair cable(TPC), power line carrier(PLC), coaxial cable(CA), wireless network(wireless data, TRS and PCS). Among the communication media only Satellite Communication guarantees the reliable communication in case of emergency such as a flood, a heavy snow and an earthquake. It can integrate two-way satellite systems to existent nationwide SCADA controlling points of electric power transmission & distribution system that enables real time remote monitoring and controlling automatically. This paper presents some of design efforts for the satellite communication network as the media of Automation Systems.

  • PDF

Protectability: An Index to Indicate Protection Level of Primary Distribution Systems

  • Lee, Seung-Jae;Park, Myeon-Song;Kang, Sang-Hee;Kim, Sang-Tae
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.1
    • /
    • pp.7-16
    • /
    • 2003
  • A new method to evaluate the protection capability of distribution systems is reported in this paper. This work describes the fuzzy evaluation attributes and aggregation method of evaluation results based on a hierarchical model and the modified combination rule. An evaluation grade index called "protectability" is proposed and is expected to be a very uscful tool in defining an optimal protection and realizing the adaptive protection.rotection.

Fuzzy-GA Application for Allocation and Operation of Dispersed Generation Systems in Composite Distribution Systems (복합배전계통에서 분산형전원의 설치 및 운영을 위한 Fuzzy-GA 응용)

  • 김규호;이유정;이상봉;유석구
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.10
    • /
    • pp.584-592
    • /
    • 2003
  • This paper presents a fuzzy-GA method for the allocation and operation of dispersed generator systems(DGs) based on load model in composite distribution systems. Groups of each individual load model consist of residential, industrial, commercial, official and agricultural load. The problem formulation considers an objective to reduce power loss of distribution systems and the constraints such as the number or total capacity of DGs and the deviation of the bus voltage. The main idea of solving fuzzy goal programming is to transform the original objective function and constraints into the equivalent multi-objectives functions with fuzzy sets to evaluate their imprecise nature for the criterion of power loss minimization, the number or total capacity of DGs and the bus voltage deviation, and then solve the problem using genetic algorithm. The method proposed is applied to IEEE 12 bus and 33 bus test systems to demonstrate its effectiveness. .

A study on the computer application for efficient management of the power distribution system (효율적인 배전관리를 위한 컴퓨터 응용연구)

  • 이병철;서영노;정진현;고윤석;김호용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.975-980
    • /
    • 1993
  • In accordance with increase, if electronic power demanded, more efficient supervisory control of distribution system will be required. This study contains development of MMI(man-machine-interface) system with GUI(graphic-user-interface), for the automatic power distribution system. The main function of MMI system is to edit network of power distribution and to management of data base for network. The GUI function of MMI system enables more efficient management of power distribution system.

  • PDF

Constant DC Capacitor Voltage Control based Strategy for Active Load Balancer in Three-phase Four-wire Distribution Systems

  • Win, Tint Soe;Tanaka, Toshihiko;Hiraki, Eiji;Okamoto, Masayuki;Lee, Seong Ryong
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.176-183
    • /
    • 2014
  • Three-phase four-wire distribution systems are used for both three-phase three-wire loads and single-phase two-wire consumer appliances in South Korea, Myanmar and other countries. Unbalanced load conditions frequently occur in these distribution systems. These unbalanced load conditions cause unbalanced voltages for three-phase and single-phase loads, and increase the loss in the distribution transformer. In this paper, we propose constant DC capacitor voltage control based strategy for the active load balancer (ALB) in the three-phase four-wire distribution systems. Constant DC capacitor voltage control is always used in active power line conditioners. The proposed control strategy does not require any computation blocks of the active and reactive currents on the distribution systems. Balanced source-side currents with a unity power factor are obtained without any calculation block of the unbalanced active and reactive components on the load side. The basic principle of the constant DC capacitor voltage control based strategy for the ALB is discussed in detail and then confirmed by both digital computer simulations using PSIM software and prototype experimental model. Simulation and experimental results demonstrate that the proposed control strategy for the ALB can balance the source currents with a unity power factor in the three-phase four-wire distribution systems.

A Study for Determining the Permissible Operating Range of Distributed Generation interconnected into Distribution System (배편계통에 도입되는 분산전원의 운전가능범위 결정에 관한 연구)

  • Kim, Tae-Eung;Kim, Jae-Eon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.2
    • /
    • pp.93-101
    • /
    • 2002
  • This paper describes a new method for determining the permissible operating range of DG(Distributed Generation) when DG is introduced into power distribution systems of which the voltage is controlled by LDC(Line Drop Compensator). Much of the DG installed during the next millennium will be accomplished through the reconstruction of the electric power industry. But in that case, it is difficult to properly maintain the terminal voltage of low voltage customers by using only LDC. This paper presents a method for determining the permissible operating range of DG for proper voltage regulation of power distribution systems with LDC. Proposed method has been applied to a 22.9 kV model and practical distribution systems, and its result is almost identical with the simulation result.