• Title/Summary/Keyword: Power Distribution Impedance

Search Result 190, Processing Time 0.021 seconds

A Study on the Application of SFCL on 22.9 kV Bus Tie for Parallel Operation of Power Main Transformers in a Power Distribution System (배전계통에 전력용 변압기 병렬운전시 22.9 kV SFCL Bus Tie 적용방안에 관한 연구)

  • On, Min-Gwi;Kim, Myoung-Hoo;Kim, Jin-Seok;You, Il-Kyoung;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.20-25
    • /
    • 2011
  • This paper analyzed the application of Superconducting Fault Current Limiter (SFCL) on 22.9 [kV] bus tie in a power distribution system. Commonly, the parallel operations of power main transformers offer a lot of merits. However, when a fault occurs in the parallel operation of power main transformer, the fault currents might exceed the interruption capacity of existing protective devices. To resolve this problem, thus, the SFCL has been studied as the fascinating device. In case that, Particularly, the SFCL could be installed to parallel operation of various power main transformers in power distribution system of the Korea Electric Power Corporation (KEPCO) on 22.9 [kV] bus tie, the effect of the resistance of SFCL could reduce the increased fault currents and meet the interruption capacity of existing protective devices by them. Therefore, we analyzed the effect of application and proposed the proper impedance of the R-type SFCL on 22.9 [kV] bus tie in a power distribution system using PSCAD/EMTDC.

A Chaotic Pattern Analysis of High Impedance Faults (고저항 지락 사고의 카오스 패턴 해석)

  • Ko, Jae-Ho;Bae, Young-Chul;Yim, Hwa-Yeoung
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.542-544
    • /
    • 1997
  • The analysis of distribution line faults is essential to the proper protections in the power system. A high impedance fault does not make enough current to cause conventional protective devices. In this paper, Fractal dimensions are estimated for distinction between normal status and fault status in the power system. Application of the concepts of the fractal geometry to analyze chaotic properties of high impedance fault current was described. In addition, to analyze variation of fault current and normal current on phase plane, embedding state variables are reconstructed from 1 dimensional time series.

  • PDF

A method for uniform current distribution of HTS cable using Inter-Phase Transformers (Inter-Phase Transformers를 이용한 고온초전도 케이블의 층간 전류 등분배 방안)

  • Choi, Yong-Sun;Yim, Seong-Woo;Sim, Jung-Wook;Hwang, Si-Dole;Park, In-Gyu
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.973-975
    • /
    • 2003
  • Uniform current distribution among conductor layers in HTS cables using IPTS (inter-phase transformers) was proposed. Conventional methods for current distribution, in which resistors are inserted to conductor layers, causes additional loss. In contrast, IPTS, which use magnetic coupling, make it possible that the current in parallel circuits is distributed uniformly with any load, and minimize the loss. In this study, IPTS were designed and fabricated for examination of uniform current distribution in the conductor layers of HTS cables. The ITP was designed through calculation of its impedance that can cancel the inductance of the conduction layers.

  • PDF

Analysis of Impedance Performance for Condenser by Harmonic Current Source (고조파 전류원에 의한 콘덴서 임피던스 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.4
    • /
    • pp.57-64
    • /
    • 2011
  • Most of the user has been used linear load and non-linear load. The former is usually inductive load which is needed power factor compensation, the latter is power conversion system device. Actually two kinds of load is used together in the customer application. Generally capacitor is used for power-factor compensation of inductive load and reduction harmonics of non linear load with reactor. Non-linear load generates harmonic current for its energy conversion process. If harmonic current pass along the low impedance side of distribution system, the magnification of voltage and current is appeared by the series and parallel resonance. As a result, condenser has received a bitter electrical stress by the harmonic component. In this paper, we analyzed that how resonance is changed by the 5-th harmonic current pattern and proposed an alternative plan for non-magnification.

A Study on Conducted EMI Emission Characteristics in 3-Phase PWM Converter (3상 PWM 컨버터의 전도성 EMI 특성에 관한 연구)

  • 채영민;고재석;목형수;최규하;홍순찬;백수현;이은웅
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.41-48
    • /
    • 1997
  • Nowadays, EMI emission characteristics, which causes harmful effect on power distribution system and other equipments, have been studied in field of Power electronics, vigoriously. So, in this paper, the conducted EMI emission is measured and compared for 3-phase diode rectifier and PWM converter according to switching frequency variation and current control method change using LISN(Line Impedance Stabilization Network) and spectrum analyzer.

  • PDF

Analysis on Recloser-Fuse Coordination in a Power Distribution System linked Small Scale Cogeneration System with Superconducting Fault Current Limiter (소형 열병합발전 시스템이 연계된 배전계통에 초전도 전류제한기 적용시 리클로져-퓨즈 협조 분석)

  • Kim, Myoung-Hoo;Kim, Jin-Seok;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Lee, Joon-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.499-505
    • /
    • 2010
  • This paper analyzed that the coordination of recloser-fuse when a superconducting fault current limiter (SFCL) is installed to a power distribution system linked small scale cogeneration system. As a rule, the recloser to properly protect against both permanent and temporary fault is installed to upstream of fuse. Therefore, in a power distribution system linked small scale cogeneration system, the fault current is increased by adding fault current of small scale Cogeneration system when a permanent fault occurs, and the fuse could melt during the first fast operation of the recloser because of more sufficient heat from the increased current. However, when SFCLs are applied into a power distribution system linked small scale cogeneration system, the coordination of recloser-fuse could be accomplished due to decreased fault current as the effect of the impedance value of the SFCL. Therefore, to solve these problems, we analysed the operation of recloser-fuse coordination in a power distribution system linked small scale cogeneration system with SFCL using PSCAD/EMTDC.

The Study on Correction of Protective Relaying Set Value for the Power Electric Network Paralleled with Wind Farm (풍력전단지의 계통 연계 운전에 따른 보호 계전기 설정치 정정에 관한 고찰)

  • Jang, Sung-Il;Choi, Don-Man;Choi, Jeong-Hwan;Kim, Kwang-Ho;Oh, Jong-Youl;Kim, Joo-Yearl
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.487-490
    • /
    • 2002
  • Wind farm paralleled with electric power network can supply the power into a power network not only the normal conditions, but also the fault conditions of distribution network. If the fault happened in the power line with wind farm, the fault current level measured in a relaying point might be lower than that of distribution network without wind turbine generator. Consequently, it is difficult to detect the fault happened in the distribution network connected with wind generator. This paper describes the influence of wind turbine generator on the protective relaying system for detecting the fault occurred in a power line network. Simulation results shows that the fault current depends on the fault impedance, location, and the capacity of wind farm and distribution network load.

  • PDF

An Over Current Protection Scheme for Hybrid Active Power filter

  • Lee Woo-Cheol;Chae Beom-Seok;Hyun Dong-Seok;Lee Taeck-Kie
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.571-575
    • /
    • 2001
  • A protection scheme for hybrid active power filters, which is combined shunt passive filter and small rated series active filter, is presented and analyzed in this paper. The proposed series active power filter operated as a high impedance 'k($\Omega$)' to the fundamental component when over current occurs in the power distribution system, and three control strategies are proposed in this paper. The first is the method by detecting the fundamental source current through the p-q theory, the second is the method by detecting the fundamental component of load current in Synchronous Reference Frame (SRF) and the third is the method by detecting the input voltage. When the over current occurs in the power distribution system, the proposed scheme protects the series active power filter without additional protection circuits. The validity of proposed protection scheme is investigated through experimental result for the prototype hybrid active power filter system.

  • PDF

A Study of Re-Fuse Coordination Method of Distribution System with SFCL (배전계통에 초전도 전류제한기 적용 시 Relcoser-Fuse 협조 방법에 관한 연구)

  • Kim, Myoung-Hoo;Kim, Jin-Seok;You, Il-Kyoung;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.1835-1841
    • /
    • 2009
  • We analyze the problem of recloser-fuse coordination when a superconducting fault current limiter (SFCL) is installed to a power distribution system. Generally, The recloser is installed to upstream of fuse to protect against both permanent fault and temporary one appropriately. However, in a power distribution system with SFCL, the fault current is decreased by the effect of the impedance value of the SFCL and when a permanent fault occurs, the fuse may not melt during the last delay operation of the recloser because of the insufficient heat from the decreased current. Therefore, when SFCLs are applied into a power distribution system, the rating of the fuse has to be reselected to coordinate recloser to fuse effectively. To solve these problems, this paper analysed the operation of recloser-fuse coordination and presented the improved recloser-fuse coordination method in a power distribution system with SFCL using PSCAD/EMTDC.

Analysis on the Protective Coordination on Neutral Line of Main Transformer in Power Distribution Substation with Superconducting Fault Current Limiter (MTR 중성점 접지에 초전도 전류제한기 적용시 지락과전류계전기 동작 분석)

  • Kim, Jin-Seok;Lim, Sung-Hun;Moon, Jong-Fil;Kim, Jae-Chul;Hyun, Ok-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2089-2094
    • /
    • 2009
  • The fault current has increased due to growth of distributed generations for the large power demand in power distribution system. To solve some problem such as excess of the circuit breaker's cut-off ratings, the superconducting fault current limiter(SFCL) has been progressed. However, the operational characteristics of the relay is changed by SFCL. Therefore, the proper impedance for the SFCL should be selected to keep protective coordination with the SFCL when SFCL is introduced on the neutral line of main transformer in distribution system. In this paper, the proper normal conducting resistance was suggested to solve the problem in case of the protection coordination with SFCL.