• Title/Summary/Keyword: Power Distance

Search Result 2,398, Processing Time 0.031 seconds

The Effects of Landing Height and Distance on Knee Injury Mechanism (착지의 높이와 거리가 무릎 부상 메카니즘에 미치는 영향)

  • Cho, Joon-Haeng;Kim, Ro-Bin
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.197-205
    • /
    • 2011
  • Various jumping and landing motions are shown during sports event. But most previous studies have not considered landing height and distance simultaneously. The purpose of this study was to identify the effects of landing height and distance on knee injury mechanism. Fourteen male(age: $28.86{\pm}1.99$ yrs, height: $177.00{\pm}4.69$ cm, weight: $76.50{\pm}6.41$ kg) participated in this study. The subjects attempted drop landing task onto the ground from 30 cm to 45 cm heights and to 20 cm to 40 cm distances. The results were as follows. First, higher drop landing height and longer distance showed greater degree of maximal knee flexion and valgus. Second, higher drop landing height and longer distance showed greater maximal knee extension moment and varus moment. Third, higher drop landing height and longer distance showed larger maximal knee absorption power. Lastly, higher drop landing height showed increased Peak GRF. Landing height was more related to the cause of injury, which was indicated by increased maximal knee extension moment, peak GRF and maximal knee absorption power. Landing distance was also associated with increased knee valgus moment and absorption power during landing. These results suggest that landing height and distance may be the cause of injury.

Resonant Type Wireless Power Transfer Using an Optimized Antenna at 1m Distance (1m 거리에서 최적화된 안테나를 통한 공진방식 무선전력전송)

  • Kim, Young Hyun;Ryu, Daun;Park, Daekil;Koo, Kyung Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.20 no.3
    • /
    • pp.246-251
    • /
    • 2016
  • This paper has optimized WPT (wireless power transfer) antenna, and compared EM (electromagnetic) simulation result with measurement for the magnetic resonant type standard of A4WP (alliance for wireless power) using 6.78MHz frequency and 1m distance. Power transmission distance is affected by various factors such as system shape, antenna size, and resonator coil pitch etc, which were confirmed by the EM simulation. By simulation an optimized WPT antenna was designed for a fixed distance, and the transmission loss ${\mid}S_{21}{\mid}$ has been calculated with changing distance. Measurement was carried for the fabricated antenna, and the measured transmission loss is 1.5dB with 70% efficiency at maximum 1.3m distance compared to the simulated loss of 1.6dB with 69% efficiency

A Study on the Development of the Digital Distance Relay Simulator for Education using GUI (GUI를 이용한 교육용 디지털 거리계전기 시뮬레이터 개발에 관한 연구)

  • Kim Dong-Su;Kim Chul-Hwan;Lee Ki-Teak;Park Nam-Ok
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.8
    • /
    • pp.388-395
    • /
    • 2005
  • It has always been of great importance in the electrical power system to educate an algorithm on the digital relaying, but it is difficult to educate an algorithm of a digital distance relay on power system because of exclusiveness of the relaying algorithm on power system. Therefore, we need a digital distance relay simulator, which can simulate the algorithm of the digital relaying on transmission line. In this Paper, we extract fundamental components using digital signal processing from data which are a variety of the simulated faults by EMTP. Then this simulator represents instantaneous values, ms values and symmetrical components that are calculated by fundamental components of voltages and currents. The Simulator also represents the zones of a digital distance relay and the locus of an impedance using GUI. Consequently, the developed simulator is particularly useful for understanding of the fundamental concepts of a distance relaying algorithm from a power system engineer points of view.

An Algorithm of Predicting the Zone 3 Trip Time of Distance Relay by using PMU Data when Power Systems Face Cascaded Event on Transmission System (송전 계통의 광역정전 징후 시 PMU 취득 데이터를 이용한 거리계전기 Zone3 동작시간 예측 알고리증)

  • Kim, Jin-Hwan;Lim, Il-Hyung;Lee, Seung-Jae;Choi, Myeon-Song;Kim, Tae-Wan;Lim, Seong-Il;Kim, Sang-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2303-2310
    • /
    • 2009
  • Defense systems are needed to prevent catastrophic failures of a power grid due to cascaded events. Cascaded events can be attributed to improper operations of protective relays. Especially, it is the most dangerous problem that trips of backup relays by overload. In this paper, a new algorithm of predicting Zone 3 acting time of distance relay is proposed using the real time synchronized data from PMUs on the transmission system when the power system is danger. In the proposed, some part of the power system are outage when some unexpected fault in the power system, the algorithm will monitor the impedance locus of distance relay. At this time, if there is a big change of Impedance locus, the algorithm will calculate the Zone 3 acting time of the distance relay by the over load. In the case studies, the estimation and simulation network have been testified and analysed in Matlab Simulink.

The Analysis of maximum output power of PV module by solar cell Interval (PV모듈에서 태양전지의 간격에 따른 전기적 출력 특성 분석)

  • Lee, Jin-Seob;Kang, Gi-Hwan;Park, Chi-Hong;Yu, Gwon-Jong;Ahn, Hyung-Gun;Han, Deuk-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.13-14
    • /
    • 2008
  • In this paper, we analyze the electrical characteristics of PV depending on distance among solar cells before and after lamination process. From the result, the PV module's maximum power increases about 3.37% when solar cells's distance is 10mm. And the maximum power increases up to 8.42% when solar cells's maximum distance is 50mm. It is assumed that PV module's surface temperature decreases because of increasing distance between solar cells that would give high power generation. Also, short distance between solar cell and frame result in contamination on glass. When considering reduced maximum power caused by contaminant, from that, we can fabricated PV module of lower cost with high performance.

  • PDF

Development of a Calculating Program for the Prism Power Influencing to Binocular Vision according to Shift of Binocular Visual Points in the Distance Vision Spectacles (원용안경의 양안 주시점 이동에 따른 양안시에 미치는 프리즘 굴절력 산출 프로그램 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • Purpose: Developing a calculating program for the prism power which influenced the binocular vision according to shifts of binocular visual points in the distance vision spectacles. Methods: By using the Delphi 6.0 programming language, we developed a calculating program of the relative binocular prism power according to the movements of binocular visual points in the distance vision spectacles, which was calculated by dragging the mouse along the traces of binocular visual points on the computer window. Results: We developed a calculating program for the relative binocular prism power according to the movements of binocular visual points in the distance vision spectacles. The user of the program could confirm the trace of visual points by allowing them to display the trace of binocular visual points on the computer screen with a mouse button. An application on confirming the variation of prism power by graphs in the program also allowed the user to use the program more conveniently. Conclusions: By using the developed program, the user could easily calculate the relative binocular prism power according to shifts of binocular visual points in the distance vision spectacles. We also found that the developed program helped the user to receive a lot of assistance in analyzing the asthenopia.

5.8GHz 25W Microwave Wireless Power Transmission System Development and Measurement (5.8GHz 25W 무선전력전송 시스템 개발 및 측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2019
  • In this paper, 5.8GHz 25W microwave wireless power transmission system was developed. The transmission system is composed of a signal generator, a 1W drive amplifier, a 25W power amplifier, and a circularly polarized transmission antenna. The receiving system was fabricated with an integrated receiver that combines a circularly polarized receiving antenna, a pass band filter, and an RF-DC converter. And a multi-integrated receiver had twelve parts, including an integrated receiver. Under the conditions, voltage and current were measured for the system at 5cm intervals from a minimum distance of 5cm to a maximum distance of 80cm. The power was calculated for the system. The results of the system are shown in tables and graphs. The power decreases with distance, but the power does not drop sharply due to a multi-integrated receiver.

Design of the 10MHz and 10W Power Source for Short Distance Wireless Power Transmission (근거리 무선 전력 전송을 위한 평형 증폭기 구조의 10MHz 10W급 전력원 설계)

  • Park, Dong-Hoon;Kim, Gui-Sung;Lim, Eun-Cheon;Park, Hye-Mi;Lee, Moon-Que
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.3
    • /
    • pp.437-441
    • /
    • 2012
  • In this paper, we have designed and manufactured 10MHz power source for the application of short distance wireless power transmission. The designed power source consists of a DDS(direct digital synthesizer) signal generator, a buffer driver and a balanced power amplifier. Short range wireless power transmission is usually carried out by near-field inductive coupling between source and load. The distance variation between source and load gives rise to the change of load impedance of power amplifier, which has effect on the operation of power amplifier. To overcome this problem due to load variation of power amplifier, we have adopted the balanced power amplifier using the quadrature hybrid implemented by lumped capacitors and a mutually coupled coil. The experiment results show the above 40dBm output power, frequency range of 9 to 11MHz, and total DC power consumption of 36W.

Spherical Flux Concentration Transmitter for Omnidirectional Wireless Power Transfer with Improved Power Transmission Distance (전력전송거리 증가를 위한 구형 자속 집중 송신부 구조의 설계 및 해석)

  • Park, Kwang-Rock;Cha, Hwa-Rang;Kim, Rae-Young;Kim, Tae-Jin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.181-187
    • /
    • 2020
  • In this study, we propose a spherical flux concentration structure for omnidirectional wireless power transfer. Omnidirectional wireless power transfer technology is a method that can transmit power to a transmitter located in an arbitrary position in a two-dimensional or three-dimensional space. However, to improve the power transfer distance in a wireless power transfer system, the diameter of the coil or the number of windings must increase, thereby increasing the size of the transmitter. The proposed transmitter structure adds a ferrite core inside the transmitter coil so that the magnetic flux generated by the transmitter is directed toward the position of the receiver. As a result, the flux linkage and the mutual inductance increase. By implementing the omnidirectional wireless power transfer system using the proposed structure, the power transfer distance can be improved by 65% compared with the conventional system without increasing the size of the transmitter. Simulation shows that the proposed spherical flux concentration structure increases the mutual inductance of the omnidirectional wireless power transmission system.

A Fast Algorithm of the Apparent Factor Calculation for Distance Relay Setting without Fault Analysis

  • Jo, Yong-Hwan;Xiang, Ling;Choi, Myeon-Song;Park, Ji-Seung;Lim, Seong-Il;Kim, Sang-Tae;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.1
    • /
    • pp.64-69
    • /
    • 2013
  • For power system protection, the distance relay settings are important. Apparent factor is a necessary parameter in distance relay settings. Apparent factors have to be calculated when setting the distance relays and doing the resetting in case of configuration change in power system. The problem is that the current method to calculate apparent factor requires tools and plenty of time to do fault analysis and this method is complex especially in case of configuration change. Therefore this paper proposes a fast algorithm to calculate apparent factor without the fault analysis. Test results prove that this algorithm is simple and accurate by simulation.