• 제목/요약/키워드: Power Consumption Patterns

검색결과 149건 처리시간 0.034초

에어컨 인버터의 3차원 Vector제어 (Three dimensional vector control of airconditioner inverter)

  • 장재석;이장명
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.500-503
    • /
    • 1997
  • In this paper, we investigate the control methodology of inverter Airconditioner, using the three dimensional vector scheme. The method of three dimensional vector aims at the determination of optimal switching patterns for PWM to reduce switching loss and to improve the performance supplied voltage. The induction motors are widely used for home Airconditioners. These motors can be classified into two types: on or off control of Airconditioner and the speed control of motor. For speed control of motors, generally PWM methods are used. The PWM method based upon the modulation of triangular wave can not afford to supply line voltage to the motor sufficiently because of the capacity of processing speed of micro processors. Therefore airconditioner can not be operated efficiently. This problem can be solved with the method of three dimensional vector since it can increase the supplied voltage and maximum operating frequency of motor to 173V and 96Hz, respectively. As the result, this method shows 10 - 15% increase of voltage and 10% increase of operating frequency over the modulation of triangular wave. According to a theoretical study, the number of switching in the method of three dimensional vector is smaller than that of the modulation of triangular wave. The power consumption can be reduced and the supplied voltage can be increased. In other words, the efficiency of Airconditioner can be improved. We show that the method of three dimensional vector can supply higher voltage than the modulation of triangular method through the experiments and verify the degree of improvement of efficiency theoretically.

  • PDF

Physiological effects of biocide on marine bivalve blue mussels in context prevent macrofouling

  • Haque, Md Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • 제40권3호
    • /
    • pp.136-143
    • /
    • 2016
  • Background: Mussels are stubborn organisms attached to solid substrata by means of byssus threads. The abundance of marine mussel Mytilus edulis in marine facilities like power stations was reason to select among fouling animals. Methods: Mortality patterns as well as physiological behavior (oxygen consumption, foot activity, and byssus thread production) of two different size groups (14- and 25-mm shell length) of M. edulis were studied at different hydrogen peroxide concentrations ($1-4mg\;l^{-1}$). Results: Studied mussels showed progressive reduction in physiological activities as the hydrogen peroxide concentration increased. Mussel mortality was tested in 30 days exposure, and 14 mm mussels reached the highest percentage of 90% while 25 mm mussels reached 81%. Produced data was echoed by Chick-Watson model extracted equation. Conclusions: This study points that, while it could affect the mussel mortality moderately in its low concentrations, hydrogen peroxide has a strong influence on mussels' physiological activities related to colonization. Therefore, hydrogen peroxide can be an alternative for preventing mussel colonization on facilities of marine environment.

도시기반 에너지공급시스템의 최적화 방안 연구 (A Study on the Optimal Design of Urban Energy Supply Systems)

  • 김용기;이태원;우남섭
    • 대한기계학회논문집B
    • /
    • 제33권6호
    • /
    • pp.396-402
    • /
    • 2009
  • Recently many efforts have been carried out on the development of energy-efficient and environment-friendly systems in order to preserve natural environment and to reduce environmental loads in the branch of the urban planning and the building design. In this study, a mathematical method was developed and a numerical analysis was carried out with various parameters to provide substantial data for optimal design and operation of urban energy supply systems. Components of the system and their specifications, such as a co-generation system and other heating and cooling systems, could be obtained through this analysis for various resource and energy requirements in urban area. In this study, the system constituents and operating characteristics, and their economic performances such as the value of objective function, the amount of energy consumption were discussed for various load patterns and power load ratios. Also, it turns out that the optimal energy supply system can save energy by $10{\sim}20%$ in comparison with the conventional energy supply system.

2축 마이크로 플럭스게이트 센서 제작을 통한 전자 나침반 개발 (Development of Electronic Compass Using 2-Axis Micro Fluxgate Sensor)

  • 박해석;심동식;나경원;황준식;최상언
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.418-423
    • /
    • 2003
  • This paper describes an electronic compass using micromachined X- and Y-axis micro fluxgate sensors which were perpendicularly aligned each other to measure X- and Y-axis magnetic fields respectively. The fluxgate sensor was composed of rectangular-ring shaped magnetic core and solenoid excitation(49 turns) and pick-up(46 turns) coils. Excitation and pick-up coil patterns which were formed opposite to each other wound the magnetic core alternatively to improve the sensitivity and to excite the magnetic core in an optimal condition with reduced excitation current. The magnetic core has DC effective permeability of ~1000 and coercive field of ~0.1 Oe. The magnetic core is easily saturated due to the low coercive field and closed magnetic path for the excitation field. To decrease the difference of induced second harmonic voltages from X- and Y-axis, excitation condition of 2.8 $V_{P-P}$ and 1.2 MHz square wave was selected. Excellent linear response over the range of -100 $\mu$T to +100 $\mu$T was obtained with 210 V/T sensitivity. The size of each micro fluxgate sensor excluding pad region was about 2.6${\times}$1.7 $mm^2$ and the power consumption was estimated to be 14 mW.W.

A Multi-purpose Fingerprint Readout Circuit Embedding Physiological Signal Detection

  • Eom, Won-Jin;Kim, Sung-Woo;Park, Kyeonghwan;Bien, Franklin;Kim, Jae Joon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제16권6호
    • /
    • pp.793-799
    • /
    • 2016
  • A multi-purpose sensor interface that provides dual-mode operation of fingerprint sensing and physiological signal detection is presented. The dual-mode sensing capability is achieved by utilizing inter-pixel shielding patterns as capacitive amplifier's input electrodes. A prototype readout circuit including a fingerprint panel for feasibility verification was fabricated in a $0.18{\mu}m$ CMOS process. A single-channel readout circuit was implemented and multiplexed to scan two-dimensional fingerprint pixels, where adaptive calibration capability against pixel-capacitance variations was also implemented. Feasibility of the proposed multi-purpose interface was experimentally verified keeping low-power consumption less than 1.9 mW under a 3.3 V supply.

Implementation of Excitatory CMOS Neuron Oscillator for Robot Motion Control Unit

  • Lu, Jing;Yang, Jing;Kim, Yong-Bin;Ayers, Joseph;Kim, Kyung Ki
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제14권4호
    • /
    • pp.383-390
    • /
    • 2014
  • This paper presents an excitatory CMOS neuron oscillator circuit design, which can synchronize two neuron-bursting patterns. The excitatory CMOS neuron oscillator is composed of CMOS neurons and CMOS excitatory synapses. And the neurons and synapses are connected into a close loop. The CMOS neuron is based on the Hindmarsh-Rose (HR) neuron model and excitatory synapse is based on the chemical synapse model. In order to fabricate using a 0.18 um CMOS standard process technology with 1.8V compatible transistors, both time and amplitude scaling of HR neuron model is adopted. This full-chip integration minimizes the power consumption and circuit size, which is ideal for motion control unit of the proposed bio-mimetic micro-robot. The experimental results demonstrate that the proposed excitatory CMOS neuron oscillator performs the expected waveforms with scaled time and amplitude. The active silicon area of the fabricated chip is $1.1mm^2$ including I/O pads.

Workload Characteristics-based L1 Data Cache Switching-off Mechanism for GPUs

  • Do, Thuan Cong;Kim, Gwang Bok;Kim, Cheol Hong
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권10호
    • /
    • pp.1-9
    • /
    • 2018
  • Modern graphics processing units (GPUs) have become one of the most attractive platforms in exploiting high thread level parallelism with the support of new programming tools such as CUDA and OpenCL. Recent GPUs has applied cache hierarchy to support irregular memory access patterns; however, L1 data cache (L1D) exhibits poor efficiency in the GPU. This paper shows that the L1D does not always positively affect the applications in terms of performance and energy efficiency for the GPU. The performance of the GPU is even harmed by using the L1D for lots of applications. Our proposed technique exploits the characteristics of the currently-executed applications to predict the performance impact of the L1D on the GPU and then decides whether to continuously use the cache for the application or not. Our experimental results show that the proposed technique improves the GPU performance by 9.4% and saves up to 52.1% of the power consumption in the L1D.

A Study on the Cost-Effective Personalized Plantar Pressure Measurement System

  • Kang, Ji-Woo;Kwon, Young-Man;Lim, Meoung-Jae;Chung, Dong-Kun
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제11권4호
    • /
    • pp.11-17
    • /
    • 2019
  • Plantar pressure data can be used not only for walking patterns in daily life, but also for eating, health care, and disease prevention. For this reason, the importance of plantar pressure measurement has recently increased. However, most systems that can measure both static and dynamic plantar pressure at the same time are expensive, not portable, and not universal. In this study, we propose a system that effectively reduces the number of sensors in plantar pressure system. Through this, we want to increase the economics and practicality by reducing the size and weight of the system, as well as the power consumption. First, for static plantar pressure and dynamic plantar pressure, the values measured by existing precision instruments are analyzed to determine how many measurement parts the insole is divided into. Next, for the divided measuring parts, the position of the sensor is determined by calculating the Center of Pressure (COP) for each part with the values of all dynamic and static plantar pressure sensors. Finally, in order to construct a personalized plantar pressure measurement system, we propose a weighting method for the static plantar pressure COP and the dynamic plantar pressure COP for each part.

Iran's Coordination related to Dams and water resources management and Challenges

  • Ahadiyan. J;Hakami. M
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.33-33
    • /
    • 2023
  • In this article, the challenges of Iran and the world are compared to the management of available water resources. Especially in recent years, according to the climatic changes that have occurred all over the world and the changes in the rainfall patterns, and the corresponding changes in the management of water resources, the situation in Iran is being investigated. According to the available information, the amount of water on the planet is estimated to be about 1.36 billion cubic kilometers, which covers about 71% of the earth's surface. However, about 97.5% of the water in the world is salty ocean water and only 2.5% is fresh. Therefore, only 0.025% of the total water on the planet will be usable. According to United Nations statistics, 61% of the world's water consumption is in agriculture, 23% in industry, and 8% for drinking, household, and health purposes. Considering the large number of dams in Iran, only 6% of all dams are used to produce electric energy, which is a significant difference compared to the world (approximately 19%).

  • PDF

Si-Containing Nanostructures for Energy-Storage, Sub-10 nm Lithography, and Nonvolatile Memory Applications

  • 정연식
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.108-109
    • /
    • 2012
  • This talk will begin with the demonstration of facile synthesis of silicon nanostructures using the magnesiothermic reduction on silica nanostructures prepared via self-assembly, which will be followed by the characterization results of their performance for energy storage. This talk will also report the fabrication and characterization of highly porous, stretchable, and conductive polymer nanocomposites embedded with carbon nanotubes (CNTs) for application in flexible lithium-ion batteries. It will be presented that the porous CNT-embedded PDMS nanocomposites are capable of good electrochemical performance with mechanical flexibility, suggesting these nanocomposites could be outstanding anode candidates for use in flexible lithium-ion batteries. Directed self-assembly (DSA) of block copolymers (BCPs) can generate uniform and periodic patterns within guiding templates, and has been one of the promising nanofabrication methodologies for resolving the resolution limit of optical lithography. BCP self-assembly processing is scalable and of low cost, and is well-suited for integration with existing semiconductor manufacturing techniques. This talk will introduce recent research results (of my research group) on the self-assembly of Si-containing block copolymers for the achievement of sub-10 nm resolution, fast pattern generation, transfer-printing capability onto nonplanar substrates, and device applications for nonvolatile memories. An extraordinarily facile nanofabrication approach that enables sub-10 nm resolutions through the synergic combination of nanotransfer printing (nTP) and DSA of block copolymers is also introduced. This simple printing method can be applied on oxides, metals, polymers, and non-planar substrates without pretreatments. This talk will also report the direct formation of ordered memristor nanostructures on metal and graphene electrodes by the self-assembly of Si-containing BCPs. This approach offers a practical pathway to fabricate high-density resistive memory devices without using high-cost lithography and pattern-transfer processes. Finally, this talk will present a novel approach that can relieve the power consumption issue of phase-change memories by incorporating a thin $SiO_x$ layer formed by BCP self-assembly, which locally blocks the contact between a heater electrode and a phase-change material and reduces the phase-change volume. The writing current decreases by 5 times (corresponding to a power reduction of 1/20) as the occupying area fraction of $SiO_x$ nanostructures varies.

  • PDF