• Title/Summary/Keyword: Power Augmentation

Search Result 85, Processing Time 0.033 seconds

Analysis of the power augmentation mechanisms of diffuser shrouded micro turbine with computational fluid dynamics simulations

  • Jafari, Seyed A.;Kosasih, Buyung
    • Wind and Structures
    • /
    • v.19 no.2
    • /
    • pp.199-217
    • /
    • 2014
  • Reported experimental and computational fluid dynamic (CFD) studies have demonstrated significant power augmentation of diffuser shrouded horizontal axis micro wind turbine compared to bare turbine. These studies also found the degree of augmentation is strongly dependent on the shape and geometry of the diffuser such as length and expansion angle. However study flow field over the rotor blades in shrouded turbine has not received much attention. In this paper, CFD simulations of an experimental diffuser shrouded micro wind turbine have been carried out with the aim to understand the mechanisms underpinning the power augmentation phenomenon. The simulations provide insight of the flow field over the blades of bare wind turbine and of shrouded one elucidating the augmentation mechanisms. From the analysis, sub-atmospheric back pressure leading to velocity augmentation at the inlet of diffuser and lowering the static pressure on blade suction sides have been identified as th dominant mechanisms driving the power augmentation. And effective augmentation was achieved for ${\lambda}$ above certain value. For the case turbine it is ${\lambda}$ greater than ${\approx}2$.

Data Augmentation Techniques of Power Facilities for Improve Deep Learning Performance

  • Jang, Seungmin;Son, Seungwoo;Kim, Bongsuck
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.323-328
    • /
    • 2021
  • Diagnostic models are required. Data augmentation is one of the best ways to improve deep learning performance. Traditional augmentation techniques that modify image brightness or spatial information are difficult to achieve great results. To overcome this, a generative adversarial network (GAN) technology that generates virtual data to increase deep learning performance has emerged. GAN can create realistic-looking fake images by competitive learning two networks, a generator that creates fakes and a discriminator that determines whether images are real or fake made by the generator. GAN is being used in computer vision, IT solutions, and medical imaging fields. It is essential to secure additional learning data to advance deep learning-based fault diagnosis solutions in the power industry where facilities are strictly maintained more than other industries. In this paper, we propose a method for generating power facility images using GAN and a strategy for improving performance when only used a small amount of data. Finally, we analyze the performance of the augmented image to see if it could be utilized for the deep learning-based diagnosis system or not.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Power Generation Using CFD

  • Prasad, Deepak;Zullah, Mohammed Asid;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.630-631
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for two different models. Observation of flow characteristics, pressure and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code.

  • PDF

Selection of Transformer for the Augmentation of an Existing AIS EHV Substation in Hilly Terrain at 3000m+ Altitude

  • Kim, Kwang-Soo;Kang, Byoung-Wook;Kim, Jae-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.12
    • /
    • pp.28-36
    • /
    • 2012
  • Augmentation of existing EHV substations located in hilly terrain and at high altitude require many different considerations as compared to substations located in plain areas and at lower altitude. Owing to high altitude and steep terrain, meticulous engineering and preparations are required, considering the actual available space at the existing substation. Historical fault events too must be considered to enhance reliability and performance of the substation equipment. This paper proposes ways to augment the existing 2 banks of 20MVA, 220/66kV power transformers ($3{\times}6.67MVA$, single-phase) to $2{\times}50$/63MVA, 220/66kV power transformers to meet continuously increasing demand of the capital city over the next 20 years. Upgrading and augmentation of existing substations, especially the main transformers and associated equipment, require replacement with minimum or no disturbance to the existing power supply system. Considerations should also be made during engineering and design, the operational flexibilities, maintenance aspects, future expandability and value addition, in terms of reliability and space usage of the existing substation.

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Energy Conversion Using CFD

  • Prasad, Deepak;Kim, Chang-Goo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.594-599
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for different models. Observation of flow characteristics and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was used to simulate the waves and after obtaining the desired wave properties; the augmentation channel plus the front guide nozzle and rear chamber were integrated to the numerical wave tank. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall moved sinusoidally with the general function, x=asin$\omega$t The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code ANSYS-CFX.

  • PDF

Primary Energy Conversion in a Direct Drive Turbine for Wave Power Generation

  • Prasad, Deepak Divashkar;Zullah, Mohammed Asid;Kim, You-Taek;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.237.1-237.1
    • /
    • 2010
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Ocean contains energy in form of thermal energy and mechanical energy: thermal energy from solar radiation and mechanical energy from the waves and tides. The current paper looks at generating power using waves. The primary objective of the present study is to maximize the primary energy conversion (first stage conversion) of the base model by making some design changes. The model entire consisted of a numerical wave tank and the turbine section. The turbine section had three components; front guide nozzle, augmentation channel and the rear chamber. The augmentation channel further consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. Different front guide nozzle configuration and rear chamber design were studied. As mentioned, a numerical wave tank was utilized to generate waves of desired properties and later the turbine section was integrated. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall which moved sinusoidally with the general function, $x=asin{\omega}t$. In addition to primary energy conversion, observation of flow characteristics, pressure and the velocity in the augmentation channel, rear chamber as well as the front guide nozzle are presented in the paper. The analysis was performed using the commercial code of the ANSYS-CFX. The base model recorded water power of 29.9 W. After making the changes, the best model obtained water power of 37.1 W which represents an increase of approximately 24% in water power and primary energy conversion.

  • PDF

Heat Transfer Augmentation on Flat Plate with Two-Dimensional Rods in Impinging Air Jet System [3] : Effect of Rod Diameter (충돌판(衝突板) 근방(近傍)에 배열(配列)된 2차원(次元) rod가 충돌분류(衝突噴流) 열전달(熱傳達)에 미치는 영향(影響)[3] : rod직경변화(直徑燮化)에 대한효과(效果))

  • Kim, D.C.;Lee, Y.H.;Seo, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.295-302
    • /
    • 1990
  • The purpose of this study is augmentation of heat transfer without additional power in two-dimensional impinging air jet. The technique of heat transfer augmentation used in this experiment is to place rod bundles in front of the flat heated surface. The effects of rod diameter, nozzle-to-target plate distance and the nozzle exit velocity on heat transfer have been investigated. The main conclusions obtained from this experiment are as follows. High heat transfer augmentation is achieved by means of flow acceleration and thinning of boundary layer by placing rod bundles in front of the flat plate. Average heat transfer coefficient becomes maximum in the case of H/B=10,D=4mm. For H/B=2,D=4mm, maximum heat transfer augmentation has been determined to be about 1.5 times larger than that of the flat plate. Heat transfer augmentation by placing the rod bundles at 12m/s is to be about 2 times more than increasing nozzle exit velocity from 12m/s to 18m/s.

  • PDF

Heat Transfer Augmentation on Flat Plate with Two-Dimensional Rods in Impinging Air Jet System[2]:Effect of rod pitch (충돌판(衝突板) 근방(近傍)에 배열(配列)된 2차원(次元) Rod가 충돌분류(衝突噴流) 열전달(熱傳達)에 미치는 영향(影響)[2]:Rod 피치변화(變化)에 대한 효과(效果))

  • Lee, Yong-Hwa;Seo, Jeong-Yun
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.1 no.2
    • /
    • pp.182-189
    • /
    • 1989
  • The propose of this study is augmentation of heat transfer without additional external power in 2-dimensional impinging air jet. The passive heat transfer augmentation method tried in this experimental study is placement of rod bundles with the clearance, 2mm, in front of the heat transfer surface. The effects of pitch distance among rods and nozzle-to-target plate distance are investigated. The overall heat transfer rate of flat plate with rods reaches maximum at H/B=10 and P=40mm, and for H/B=2 and P=40mm the augmentation rate of heat transfer becomes maximum to a value which is about 1.57 times that of the flat plate without rods.

  • PDF

Performance Study of Wind Augmentation Device for Building-integrated Wind Power (건물 풍력발전을 위한 집풍장치 성능 연구)

  • Shin, Jae-Ryul;Park, Jae-Jeun;Kim, Han-Young;Kim, Dae-Young
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • This study is performance estimation of wind augmentation device for BiWP(Building-integrated Wind Power) which recently attracts attention as a local power. various structures are installed on a rooftop of residential complex buildings. Changing a profile of these, we designed a configuration that is able to capture much air and increase exit velocity. To estimate wind augmented effect of this device, we compared numerical analysis results with wind tunnel test results. Results show that exit velocity is increased from 24% to 60% by wind augmented device on a rooftop of building.