• Title/Summary/Keyword: Power Amp. GaN

Search Result 4, Processing Time 0.017 seconds

A Compact 370 W High Efficiency GaN HEMT Power Amplifier with Internal Harmonic Manipulation Circuits (내부 고조파 조정 회로로 구성되는 고효율 370 W GaN HEMT 소형 전력 증폭기)

  • Choi, Myung-Seok;Yoon, Tae-San;Kang, Bu-Gi;Cho, Samuel
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.11
    • /
    • pp.1064-1073
    • /
    • 2013
  • In this paper, a compact 370 W high efficiency GaN(Gallium Nitride) HEMT(High Electron Mobility Transistor) power amplifier(PA) using internal harmonic manipulation circuits is presented for cellular and L-band. We employed a new circuit topology for simultaneous high efficiency matching at both fundamental and 2nd harmonic frequency. In order to minimize package size, new 41.8 mm GaN HEMT and two MOS(Metal Oxide Semiconductor) capacitors are internally matched and combined package size $10.16{\times}10.16{\times}1.5Tmm^3$ through package material changes and wire bonded in a new package to improve thermal resistance. When drain biased at 48 V, the developed GaN HEMT power amplifier has achieved over 80 % Drain Efficiency(DE) from 770~870 MHz and 75 % DE at 1,805~1,880 MHz with 370 W peak output power(Psat.). This is the state-of-the-art efficiency and output power of GaN HEMT power amplifier at cellular and L-band to the best of our knowledge.

Design and Fabrication of S-Band GaN SSPA for a Radar (레이더용 S대역 GaN 반도체 전력증폭기 설계 및 제작)

  • Lee, Jeong-Won;Lim, Jae-Hwan;Kang, Myoung-Il;Han, Jae-Seob;Kim, Jong-Pil;Lee, Sue-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.12
    • /
    • pp.1139-1147
    • /
    • 2011
  • In this paper, a design and fabrication of GaN power amplifier for the S-band frequency (400 MHz bandwidth) are presented. A combining path using ${\lambda}$/4 transmission line is implemented for GaN pallet amp. Both the combiner with suspended-type transmission structure for low-loss and the suspended stripline coupler with aperture coupling for auto gain control are realized for achieving high-power high-efficiency amplifier. Proposed power amplifier demonstrated a 5 kW peak output power, 27.8 % efficiency, 67 dB gain without ALC and a 4 kW peak output power, 25.5 % efficiency, 0.1 dB droop at 200 usec pulse width and 10 % duty with ALC.

Design and fabrication of SSPA module in X-band for Radar (X-대역 레이더용 SSPA 모듈 설계 및 제작)

  • Yang, Seong-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.5
    • /
    • pp.943-948
    • /
    • 2018
  • In this paper, SSPA Module for X-band radar was designed and fabricated by using GaN MMIC. For the purpose of configuring the high power SSPA module, the drive steamers are composed of 2-layers of GaN MMIC with considering Gain Loss. In addition, the power divider and power combiner used a 4way approach by designing a 4-stage power amplifier. The power divider has a loss of -3.0dB or more, and the I/O has a loss of -0.2dB in the power combiner and the phase difference between the ports are good at $2^{\circ}$ on average. The fabricated SSPA module got the measurement results that satisfy a Gain 48dB, P(sat)=88.3W(49.46 dBm), PAE=30.3% or more efficiency in condition of frequency range 9~10GHz. The fabricated X-Band SSPA module can be applied in RF performance improvement for SSPA module whit improvement of power divider/combiner.

Design and fabrication of SSPA module in Ku band for satellite terminals (Ku 대역 위성단말기용 SSPA 모듈 설계 및 제작)

  • Kim, Sun-il;Park, Sung-il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.4
    • /
    • pp.59-64
    • /
    • 2016
  • In this paper, a 10W GaN MMIC was designed and fabricated using the Ku-band SSPA module. For Design and fabrication of the SSPA module using Rogers(RO4003C) substrate was used for Branch-line structure. SSPA modules on budget Divider/Combiner was designed and fabricated less than the maximum insertion loss - 0.7dB. In addition, because it must be applied to the structural nature of GaN MMIC Gate Bias-Drain Bias circuit was implemented to apply the Gate-Drain sequential circuit, implemented the RF Power Detect, Temperature Detect, HPA On/Off function. Design and fabrication Ku-band SSPA Module got the measurement results that satisfy a maximum output of 15.6W, Gain 45.7dB, 19.0% efficiency.