• 제목/요약/키워드: Powder pressing

검색결과 389건 처리시간 0.033초

감나무와 밤나무 수피(樹皮)를 이용(利用)한 합판(合板) 접착증량(接着增量)에 관(關)한 연구(硏究) (On the Extending for the Plywood Glue by Bark Powder of Persimmon Tree and Chestnut Tree)

  • 서진석;도금현;조재명
    • Journal of the Korean Wood Science and Technology
    • /
    • 제16권3호
    • /
    • pp.17-21
    • /
    • 1988
  • In order to investigate the extending effects on urea-formaldehyde resin- or phenol- formal- dehyde resin- glued keruing plywood, hot pressing temperatures were controlled to 110, 140, 170 and $200^{\circ}C$. As the extender, wheat flour, persimmon bark powder, chestnut bark powder, the equivalently- extended with the above three powders, and diatomite powder were respectively mixed with 5, 10, 15 and 20% ratios to the resin liquid, and also with these the no- extended was allowed. Based on the measured bonding strength, the conclusions were drawn: 1. In the urea- formaldehyde resin, extending effects on the bonding strength were in the order of wheat flour, the equivalently- extended with the wheat flour, persimmon- and chestnut bark powder, persimmon bark powder, chestnut bark powder. In the phenol- formaldehyde resin, the effects in the order of wheat flour, persimmon bark powder, diatomite powder, chestnut bark powder were resulted in. Specifically, superior bonding strength to the no-extended were given with the wheat flour and persimmon bark powder. 2. On the whole, the bonding strength decreased gradually, as the hot pressing temperature increased except for the diatomite powder extending.

  • PDF

Effects of a compaction method for powder compacts on the critical current density of MgB2 bulk superconductors

  • Kang, M.O.;Joo, J.;Jun, B.H.;Choo, K.N.;Kim, C.J.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제21권2호
    • /
    • pp.40-44
    • /
    • 2019
  • In this study, the effects of the compaction method for (Mg+2B) powders on the apparent density and superconducting properties of $MgB_2$ bulk superconductor were investigated. The raw powders used in this study were nano-sized boron (B) and spherical magnesium (Mg). A batch of a powder mixture of (Mg+2B) was put in a steel mold and uniaxially pressed at 1 ton or 3 tons into pellets. Another batch of the powder mixture was uniaxially pressed at 1 ton and then pressed isostatically at $1800kg/cm^2$ in the water chamber. All pellets were heat-treated at $650^{\circ}C$ for 1 h in flowing argon gas for the formation of $MgB_2$. The apparent density of powder compacts pressed at 3 ton was higher than that at 1 ton. The cold isostatic pressing (CIP) in a water chamber allowed further increase of the apparent density of powder compacts, which influenced the pellet density of the final products ($MgB_2$). The compaction methods (uniaxial pressing and CIP) did not affect the formation of $MgB_2$ and superconducting critical temperature ($T_c$) of $MgB_2$, but affected the critical current density ($J_c$) of $MgB_2$ significantly. The sample with the high apparent density showed high $J_c$ at 5 K and 20 K at applied magnetic fields (0-5 T).

Densification and Conolidation of Powders by Equal Channel Angular Pressing

  • Yoon, Seung-Chae;Hong, Sun-Ig;Hong, Sun-Hyung;Kim, Hyoung-Seop
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part2
    • /
    • pp.978-979
    • /
    • 2006
  • In this study, bottom-up type powder processing and top-down type SPD (severe plastic deformation) approaches were combined in order to achieve both full density and grain refinement of metallic powders with least grain growth. ECAP (Equal channel angular pressing) was used for the powder consolidation. We investigated the consolidation, plastic deformation and microstructure evolution behavior of the metallic powders during ECAP using an experimental method. It was found that high mechanical strength could be achieved effectively as a result of the well bonded powder contact surface during ECAP process of gas atomized Al-Si powders.

  • PDF

가압형태와 발포제가 분말성형 발포법에 의해 제조된 알루미늄 발포체의 미세구조에 미치는 영향 (The Effect of Pressing Type and Foaming Agent on the Microstructural Characteristic of Al Foam Produced by Powder Compact Processing)

  • 최지웅;김혜성
    • 열처리공학회지
    • /
    • 제34권2호
    • /
    • pp.60-65
    • /
    • 2021
  • In this study, the effect of pressure type and foaming agent on the microstructural change of Al foam produced by powder compact processing was investigated. Better foaming characteristic is easily obtained from extrusion process with strong plastic deformation and preheating than that by uniaxial pressing with preheating. In current powder compact foaming process using TiH2/MgH2 mixture as a foaming agent, a temperature of 670℃ and addition of 30% MgH2 in TiH2 foaming agent was chosen as the most suitable foaming condition. The aluminum (Al) foams with maximum porosity of around 70%, relatively regular pore size and distribution were successfully produced by means of the powder metallurgy method and extrusion process.

유한요소법을 이용한 마그네슘 분말의 냉간정수압 공정시 치밀화 거동 해석 (Densification Behaviour of Magnesium Powders during Cold Isostatic Pressing using the Finite Element Method)

  • 윤승채;곽은정;최원형;김형근;김택수;김형섭
    • 한국분말재료학회지
    • /
    • 제14권6호
    • /
    • pp.362-366
    • /
    • 2007
  • Magnesium and magnesium alloys are promising materials for light weight and high strength applications. In order to obtain homogeneous and high quality products in powder compaction and powder forging processes, it is very important to control density and density distributions in powder compacts. In this study, a model for densification of metallic powder is proposed for pure magnesium. The mode] considers the effect of powder characteristics using a pressure-dependent critical density yield criterion. Also with the new model, it was possible to obtain reasonable physical properties of pure magnesium powder using cold iso-state pressing. The proposed densification model was implemented into the finite element method code. The finite element analysis was applied to simulating die compaction of pure magnesium powders in order to investigate the density and effective strain distributions at room temperature.

필터 프레싱으로 제조한 대형 알루미나 세라믹스 성형체 및 소결체의 특성 (Characteristics of Large Green and Sintered Alumina Ceramics by Filter Pressing)

  • 이현권;조경식;장민혁;장철우;김상모;김미영
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.306-312
    • /
    • 2009
  • The size of various alumina ceramics used in semiconductor and display industry is also required to increase with increase in wafer and panel size. In this research, large alumina ceramics was fabricated by filter pressing of alumina slurry using commercial powder and thereafter sintering at $1600^{\circ}C$ in gas furnace. The characteristics of large alumina ceramics thereby were compared to those of small alumina ceramics prepared by pressure forming such as uniaxial pressing and CIP. Careful control of properties of alumina slurry and filter pressing made the fabrication of large alumina ceramics possible, and its characteristics were equivalent to those of small alumina ceramics. The large alumina ceramics, prepared by sintering the green body of 63% relative density at $1600^{\circ}C$, exhibited both dense microstructure corresponding to 98.5% of relative density and 99.8% of high purity as in starting powder.

임계상대밀도 모델을 이용한 분말 등통로각압축 공정시 분말 치밀화 거동 (Analysis of Densification Behavior during Powder Equal Channel Angular Pressing using Critical Relative Density Model)

  • 복천희;유지훈;윤승채;김택수;천병선;김형섭
    • 한국분말재료학회지
    • /
    • 제15권5호
    • /
    • pp.365-370
    • /
    • 2008
  • In this study, bottom-up powder processing and top-down severe plastic deformation processing approaches were combined in order to achieve both full density and grain refinement with least grain growth. The numerical modeling of the powder process requires the appropriate constitutive model for densification of the powder materials. The present research investigates the effect of representative powder yield function of the Shima-Oyane model and the critical relative density model. It was found that the critical relative density model is better than the Shima-Oyane model for powder densification behavior, especially for initial stage.

냉간압축하에서 혼합 금속분말의 치밀화 모델 (A Densification Model for Mixed Metal Powder Under Cold Compaction)

  • 조장혁;조진호;김기태
    • 대한기계학회논문집A
    • /
    • 제24권10호
    • /
    • pp.2628-2636
    • /
    • 2000
  • Densification behavior of mixed copper and tool steel powder under cold compaction- was investigated. By mixing the yield functions proposed by Fleck et al. and by Gurson for pure powder in terms o f volume fractions and contact numbers of Cu powder, new mixed yield functions were employed for densification of powder composites under cold compaction. The constitutive equations were implemented into a finite element program (ABAQUS) to compare with experimental data and with calculated results from the model of Kim et al. for densification of mixed powder under cold isostatic pressing and cold die compaction. Finite element calculations by using the yield functions mixed by contact numbers of Cu powder agreed better with experimental data than those by volume fractions of Cu powder.

Numerical Simulation of Die Compaction: Case Studies and Guidelines

  • Coube, Olivier
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.185-186
    • /
    • 2006
  • Numerical Simulation of powder die pressing is conducted on Case Study geometry. Influence of fill density distribution and punch kinematics upon green density distribution and punch loading are studied and discussed. Deviations in punch kinematics due to punch deflection influence the most the results in term of density and force.

  • PDF

냉간 압축 하에서 금속 및 세라믹 분말에 대한 캡 모델의 연구 (A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction)

  • 이성철;김기태
    • 대한기계학회논문집A
    • /
    • 제30권11호
    • /
    • pp.1376-1383
    • /
    • 2006
  • Densification behavior of various metal and ceramic powders was investigated under cold compaction. The Cap model was proposed by using the parameters involved in the yield function for sintered metal powder and volumetric strain evolution under cold isostatic pressing. The parameters for ceramic powder can also be obtained from experimental data under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powders under cold compaction. The agreement between finite element calculations from the Cap model and experimental data is very good for metal and ceramic powder under cold compaction.