DOI QR코드

DOI QR Code

A Study of the Cap Model for Metal and Ceramic Powder under Cold Compaction

냉간 압축 하에서 금속 및 세라믹 분말에 대한 캡 모델의 연구

  • 이성철 (포항공과대학교 기계공학과) ;
  • 김기태 (포항공과대학교 기계공학과)
  • Published : 2006.11.01

Abstract

Densification behavior of various metal and ceramic powders was investigated under cold compaction. The Cap model was proposed by using the parameters involved in the yield function for sintered metal powder and volumetric strain evolution under cold isostatic pressing. The parameters for ceramic powder can also be obtained from experimental data under triaxial compression. The Cap model was implemented into a finite element program (ABAQUS) to compare with experimental data for densification behavior of various metal and ceramic powders under cold compaction. The agreement between finite element calculations from the Cap model and experimental data is very good for metal and ceramic powder under cold compaction.

Keywords

References

  1. Schwartz, E. G. and Weinstein, A. S., 1964, 'Model for Compaction of Ceramic Powders,' Journal of the American Ceramics Society, Vol. 48, No. 7, pp. 346-350 https://doi.org/10.1111/j.1151-2916.1965.tb14758.x
  2. Strijbos, S., Broese, A. V. G. and Vermeer, P. A., 1979, 'Recent Progress in Understanding Die Compaction of Powders,' Journal of the American Ceramics Society, Vol. 62, pp. 57-59. No. 6, pp. 287-293 https://doi.org/10.1111/j.1151-2916.1979.tb18805.x
  3. DiMaggio F. L. and Sandler I. S., 1971, 'Material Model for Granular Soils,' Journal of the Engineering Mechanics Division ASCE, Vol. 97, pp. 935-950
  4. Lee, S. C. and Kim, K. T., 2001, 'Densification Behavior of Aluminum Alloy Powder under Cold Compaction,' International journal of mechanical sciences, Vol. 44, pp. 1295-1308 https://doi.org/10.1016/S0020-7403(02)00003-6
  5. Kuhn, H. A. and Downey, C. L., 1971, 'Deformation Characteristics and Plasticity Theory of Sintered Powder Materials,' International Journal of Powder Metallurgy, Vol. 7, No. 1, pp. 15-25
  6. Shima, S. and Oyane, M., 1976, ' Plasticity Theory for Porous Metals,' International Journal of Mechanical Sciences, Vol. 18, pp. 285-291 https://doi.org/10.1016/0020-7403(76)90030-8
  7. Doraivelu, S. M, Gelgel, H. L., Gunasekera, J. S., Malas, J. C. and Morgan, J. T., 1984, 'A New Yield Function for Compressible P/M Materials,' International Journal of Mechanical Sciences, Vol. 26, pp. 527-534 https://doi.org/10.1016/0020-7403(84)90006-7
  8. Shima, S., Sakamoto, Y. and Kotera, H., 2002, 'Simulation of rubber isostatic pressing and shape optimization of rubber mold,' International Journal of Mechanical Sciences, Vol. 44, pp. 1603-1623 https://doi.org/10.1016/S0020-7403(02)00064-4
  9. Yang, H. C., Kim, J. K. and Kim, K. T., 2004, 'Rubber Isostatic Pressing and Cold Isostatic Pressing of Metal Powder,' Materials Science and Engineering A, Vol. 382, pp. 41-49 https://doi.org/10.1016/j.msea.2004.04.056
  10. Kwon, Y. S., Chung, S. R., Sanderow, H. I., Kim, K. T. and German, R. M., 2003, ''Numerical Analysis and Optimization of Die Compaction Process,' PM2TEC, Las Vegas
  11. Shima, S. and Mimura, K., 1986, 'Densification Behavior of Ceramic Powder,' International Journal of Mechanical Sciences, Vol. 28. No. 1, pp. 53-59 https://doi.org/10.1016/0020-7403(86)90007-X
  12. Bortzmeyer, D., 1990, Compaction des Poudres Ceramiques, Doctoral Thesis, Ecole Nationale Superieure des Mines de Paris
  13. Chtourou, H., Guillot, M., Gakwaya, A. and Guillot, M., 2002, 'Modeling of the Metal Powder Compaction Process Using the Cap Model. Part I: Experimental Material Characterization and Validation,' International Journal of Solids and Structures, Vol. 39, pp. 1059-1075 https://doi.org/10.1016/S0020-7683(01)00255-4
  14. Tszeng, T. C. and Wu, W. T., 1996, 'A Study of The Coefficients in Yield Functions Modeling Metal Powder Deformation,' Acta Materialia, Vol. 44, No. 9, pp. 3543-3552 https://doi.org/10.1016/1359-6454(96)00006-7
  15. ABAQUS User's I and II Manual, Hibbitt, Karlsson, and Sorensen, 1998
  16. Aravas, N., 1987, 'On The Numerical Integration of A Class of Pressure-dependent Plasticity Models,' International Journal for Numerical Methods in Engineering, Vol. 24, pp. 1395-1416 https://doi.org/10.1002/nme.1620240713
  17. Lush, A. M., Weber, G. and Anand, L., 1989, 'An Implicit Time-integration Procedure for a Set of Internal Variable Constitutive Equations For Isotropic ?Elasto- Viscoplasticity,' International Journal of Plasticity, Vol. 5, pp. 521-549 https://doi.org/10.1016/0749-6419(89)90012-0
  18. Govindarajan, R. M., 1992, Deformation Processing of Porous Metals, Doctoral thesis, University of Pennsylvania, U. S. A.
  19. Park, R. and Kim, K. T., 2001, 'Consolidation Behavior of SiC Powder under Cold Compaction,' Materials Science and Engineering A, Vol. 299, pp. 116-124 https://doi.org/10.1016/S0921-5093(00)01419-2
  20. Wang, J. C., 1984, 'Young's Modulus of Porous Materials,' Journal of Materials Science, Vol. 19, pp. 801-814 https://doi.org/10.1007/BF00540452
  21. Kim, K. T., Choi, S. W. and Park, H., 2000, 'Densification Behavior of Ceramic Powder Under Cold Compaction,' ASME Journal of Engineering Materials and Technology, Vol. 122, pp. 238-244 https://doi.org/10.1115/1.482793AdditionalInformation
  22. Tennery, V. J., 1989, Ceramic Materials and Components for Engines. The American Ceramic Society, pp. 1480-1494