• Title/Summary/Keyword: Powder compacting

Search Result 89, Processing Time 0.028 seconds

A Study on the Strength Properties of Self-Compacting Concrete Utilizing Waste Concrete Podwer (폐콘크리트 미분말을 활용한 자기충전 콘크리트의 강도특성에 관한 연구)

  • Choi, Yun-Wang;Moon, Dae-Joong;Kim, Sung-Su;Kim, Ki-Hyung;Moon, Han-Young
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.489-492
    • /
    • 2004
  • Compressive strength of self-compacting concrete with waste concrete powder(SCCWCP) linearly decreased as the containing ratio of WCP increas. When granulated blast furnace slag(SG) was contained for improving the rheological properties of SCCWCP, compressive strength of concrete with $15\%$ SG and $15\%$ WCP was increased in comparison with that of concrete with $30\%$ WCP. Splitting tensile strength of SCCWCP higher increased than that of CEB-FIP at same compressive strength. Relationship between compressive strength and elastic modulus of SCCWCP indicated a similar function with CEB-FIP fuction.

  • PDF

Theoretical Study on the Consolidation Behavior and Mechanical Property for Molybdenum Powders (몰리브데늄 분말의 치밀화 거동 및 기계적 물성의 이론적 연구)

  • Kim, Young-Moo
    • Journal of Powder Materials
    • /
    • v.15 no.3
    • /
    • pp.214-220
    • /
    • 2008
  • In this study, consolidation behavior and hardness of commercially available molybdenum powder were investigated. In order to analyze compaction response of the powders, the elastoplastic constitutive equation based on the yield function by Shima and Oyane was applied to predict the compact density under uniaxial pressure from 100MPa to 700MPa. The compacts were sintered at $1400-1600^{\circ}C$ for 20-60 min. The sintered density and grain size of molybdenum were increased with increasing the compacting pressure and processing temperature and time. The constitutive equation, proposed by Kwon and Kim, was applied to simulate the creep densification rate and grain growth of molybdenum powder compacts. The calculated results were compared with experimental data for the powders. The effects of the porosity and grain size on the hardness of the specimens were explained based on the modified plasticity theory of porous material and Hall-Petch type equation.

Warm Compaction: FEM Analysis of Stress and Deformation States of Compacting Dies with Rectangular Profile of Various Aspect Ratio

  • Armentani, E.;Bocchini, G. F.;Gricri, G.;Esposito, R.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.191-192
    • /
    • 2006
  • The deformation under radial pressure of rectangular dies for metal powder compaction has been investigated by FEM. The explored variables have been: aspect ratio of die profile, ratio between diagonal of the profile and die height, insert and ring thickness, radius at die corners, interference, different insert materials, i. e. conventional HSS, HSS from powders, cemented carbide (10% Co). The analyses have ascertained the unwanted appearance of tensile normal stress on brittle materials, also "at rest", and even some dramatic changes of stress patterns as the die height increases with respect to the rectangular profile dimensions. Different materials behave differently, mainly due to difference of thermal expansion coefficients. Profile changes occur when the dies are heated up to the temperature required for warm compaction. The deformation patterns depend on compaction temperature and thermal expansion coefficients.

  • PDF

Compaction of Ultra-fine WC Powder by High-Speed Centrifugal Compaction Process

  • Suzuki, Hiroyuki Y.;Kadono, Yuichi;Kuroki, Hidenori
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.24-25
    • /
    • 2006
  • High-Speed Centrifugal Compaction Process is one of slip-using compacting method originally developed for processing of oxide ceramics. In this study, we apply the HCP to ultra-fine (0.1 micron) WC powder. Organic liquid of heptane was chosen as dispersing media to avoid possible oxidation of WC. The mixing apparatus was a key to obtain dense compacts. Only the slips mixed by high energy planetary ball mill were packed up to 55% by the HCP, and sintered to almost full density at 1673 K without any sintering aids. This sintered compact marked Vickers hardness of Hv 2750 at maximum.

  • PDF

The Development of Aluminium Alloy Piston by Powder Forging Method (분말단조법에 의한 알루미늄 합금 피스톤 개발)

  • Kang, Dae-Yong;Park, Jong-Ok;Kim, Kil-Jun;Kim, Young-Ho;Cho, Jin-Rae;Lee, Jong-Heon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.8
    • /
    • pp.87-93
    • /
    • 2000
  • Powder Forging technology is being developed rapidly because of its economic merits and the possibility of lightening parts by replacing steel parts with aluminum ones especially in automotive parts manufacturing. Recently Powder Forging process is widely used for manufacturing primary mechanical parts as a combined technology of P/M and precision hot forging. This paper describes the process conditions for the powder forging of Aluminium alloy piston. For example powder alloy design preform design by FEM simulation cold of compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered compaction of specimens and preform sintering of preform powder forging process. The characteristics of sintered products and final forged piston ones are investigated with tensile strength hardness ductility and so on. Eventually its results prove the improve mechanical properties of the piston produced by powder forging.

  • PDF

Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis (SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조)

  • Park, Je-Sin;Sim, Geon-Ju
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF

Fabrication of Gradient Porous Al-Cu Sintered Body (경사 다공성 Al-Cu 소결체의 제조)

  • Byun, Jong-Min;Kim, Se-Hoon;Kim, Jin-Woo;Kim, Young-Moon;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.18 no.4
    • /
    • pp.365-371
    • /
    • 2011
  • In this study, gradient porous Al-Cu sintered body was fabricated by powder metallurgy processing. Al-Cu powder mixtures were prepared by low energy ball milling with various milling time. After ball milling for 3h, the shape of powder mixtures changed to spherical type with size of 100~500 ${\mu}m$. Subsequently, Al-Cu powder mixtures were classified (under 150, 150~300 and over 300 ${\mu}m$) and compacted (20, 50 and 100 MPa). Then, they were sintered at $600^{\circ}C$ for various holding time (10, 30, 60 and 120 min) in $N_2$ atmosphere. The sintered bodies had 32~45% of porosity. As a result, the optimum holding time was determined to be 60 min at $600^{\circ}C$ and sintered bodies with various porosity were obtained by controlling the compacting pressure.

Effect of Hollow Glass Powder on the Self-Compacting Concrete (유공 유리분말이 자기충전 콘크리트의 특성에 미치는 영향)

  • Yoon, Seob;Han, Min-Cheol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • In this study, compacting, passing performance, segregation resistance and rheological properties were tested to improve the stability of fresh concrete in the production and construction of self-compacting concrete (SCC) using hollow glass powder(GB). As a result, T50 reaching time was shortened up to amount of GB $2.0kg/m^3$. The compacting according to the amount of GB was improved by ball bearing effect of GB. However, T50 reaching time was slightly increased at $4.0kg/m^3$. In the case of passing performance, the result showed that plain was Class 1, GB $0.5{\sim}2.0kg/m^3$ was Class 0, GB $4.0kg/m^3$ was Class 1. Therefore, the passing performance was improved with 'No blocking' up to amount of GB $2.0kg/m^3$. Passing performance Block step (PJ) number by J-ring method was also best at GB $1.0kg/m^3$. In the case of segregation resistance according to the amount of GB, dynamic segregation resistance was increased compared to plain regardless of the amount of GB. And static segregation resistance showed 2.5% of segregation rate at GB $1.0kg/m^3$. Therefore, it was greatly improved compared to plain (12.5%). In the case of rheology property according to the amount of GB, plastic consistency by increasing of GB content didn't show big difference. However, yield stress by increasing of GB content was decreased with GB $1.0kg/m^3$. In conclusion, GB $1.0kg/m^3$ was effective for improvement of compacting, passing performance and yield stress. Also, it will be useful for stability of SCC by improving segregation.

An Experimental Study on the Construction Performances and Economical Evaluation of the Self-compacting Concrete by Cementitious Materials (결합재에 따른 자기충전 콘크리트의 시공성 및 경제성 평가에 관한 실험적 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.3
    • /
    • pp.315-322
    • /
    • 2017
  • The purpose of this study is to investigate experimentally the construction performances and economical evaluation of the self-compacting concrete in actual site work after selecting the optimum mix proportions according to cementitious materials. Slag cement type of 46.5% slag powder and belite cement of 51.4% $C_2S$ content, lime stone powder as binders are selected for site experiment including water cement ratio. Also, test items for optimum mix proportion are as followings ; (1) Slump flow, 500 mm reaching time, V-type flowing time and U-box height (2) Setting time, bleeding, shortening depth and adiabatic temperature rising (3) Mixing time in plant (4) Concrete quantity and cost, quality control in actual concrete work. As test results, (4) Optimum water-cement ratio ; Slag cement type 41.0% and belite cement 51.0% (2) Setting time and bleeding finishing time of slag cement are faster, bleeding content of slag cement is higher, shortening depth and adiabatic temperature rising of belite cement type are lower (3) Optimum mixing time in batcher plant is 75 seconds and concrete productive capacity is about $100{\sim}110m^3/hr$. (4) Belite cement type is lower than slag cement type in material cost 14.0%, and concrete quantity in actual concreting work save 3.3% in case of belite cement type. Therefore, self-compacting concrete of belite cement type is definitely superior to that of slag cement type in various test items without compressive strength development.

The Influence of the Aggregate Grain Shape on Compactability of High Flowing Concrete (고유동콘크리트의 충전특성에 미치는 골재 입형의 영향)

  • 이승한;정용욱;이원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.21.2-274
    • /
    • 1999
  • This study aims to examine the influence of the unit powder content of concrete and the fine aggregate ration of high flowing concrete after the improvement of grain shape of the coarse aggregate. According to the experimental results, flowbility and compating of concrete presents the best states in the S/a which has the smallest void ratio. The coarse aggregate after improvement of grain shape has been changed from 0.68 circular ratio of disc shape to 0.73 circular shape. It lead to be down 6% of fine aggregate ratio (from 47% to 41%), which is satisfactory to compacting. Also, the improvement of grain shape of the coarse aggregate lead the lowest unit powder content to be down 60kg/㎥ from (530kg/㎥ to 470kg/㎥). And about 11% unit water content can be reduced as unit powder conent is down.

  • PDF