• Title/Summary/Keyword: Powder compacting

Search Result 89, Processing Time 0.021 seconds

The Rotary Powder Compacting Process by the Cold Rotary Forging (회전성형법에서 Rotary Powder Compacting 공정에 관한 특성 연구)

  • 윤덕재;임성주;최석우;나경환
    • Transactions of Materials Processing
    • /
    • v.6 no.3
    • /
    • pp.227-232
    • /
    • 1997
  • This study is concerned with the rotary powder compacting by the cold rotary forging process. An experiment has been carried out using the rotary powder forging press(500kN) which was designed and constructed in the authors' laboratory. The detailed comparisons of several mechanical test by rotary powder forging and rotary powder compacting process are given. It is found that the highly densified P/M parts can be obtained and this process is very effective for improving quality of the powder products.

  • PDF

Effect of Compacting Pressure on Sintering Characteristics of Commercial 2xxx Series Al Alloy Powders (성형압의 변화가 상용 2xxx AI 합금계 혼합분말의 소결특성에 미치는 영향)

  • 김대건;민경호;장시영;김영도
    • Journal of Powder Materials
    • /
    • v.9 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • The characteristics of two commercial 2xxx series Al alloy powders, AMB2712 and 201AB, were evaluated and their compacting and sintering characteristics were discussed in tems of compacting pressure. The particle shapes of both two powder mixtures were irregular and their particle size distributions were broad. The compactibility of AMB2712 was superior to that of 201AB because of better fluidity. The sintered density was higher than the green density at low compacting pressure, however, it was lower than the green density when the samples were compacted at higher pressure due to the selling during sintering. The sintered density was alomost the same as the green density at the "homogeneous deformation" stage. It was observed that pores were created at the triple points due to the rapid diffusion of Cu in Al. Cu in Al.

A Study on Properties of Self-Compacting Concrete with waste marble powder (폐 대리석 분말을 활용한 자기충전 콘크리트의 특성)

  • Jeong, Euy-Chang;Lee, Yong-Moo;Kim, Young-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.76-77
    • /
    • 2013
  • The paper study on the mechanical properties of self-compacting concrete with waste marble powder. A change in the replacement ratio s of waste marble powder was measured compressive strength and slump flow, U-Box. As a results, Slump flow and U-box using waste marble powder tend to increase slump flow and compacting with replacement ratio. As the concrete with a replacement ratio of copper slag up to 10% was found to have a compressive strength superior to that of plain.

  • PDF

On Apparent Density and Flow Rate Measurement at Elevated Temperature for Powder Mixes Intended for Warm Compacting (온간성형용 분말의 고온 유동도와 겉보기 밀도 측정에 관하여)

  • Lee Jeong-Keun;Kim Soon-Wook
    • Journal of Powder Materials
    • /
    • v.13 no.1 s.54
    • /
    • pp.52-56
    • /
    • 2006
  • The aim of this work was to establish an optimal condition for determination of apparent density and flow rate for warm compacting powder. For this purpose it was evaluated uncertainty on them according to ISO Guide to the Expression of Uncertainty in Measurement. This evaluation example would be useful even in powder fluidity measurement at room temperature.

Effect of Powder and Aggregates on Compactability of High Performance Concrete

  • Lee, Seung-Han;Han, Hyung-sub
    • KCI Concrete Journal
    • /
    • v.11 no.3
    • /
    • pp.19-28
    • /
    • 1999
  • This study treated self-compacting high Performance concrete as two Phase materials of Paste and aggregates and examined the effect of powder and aggregates on self-compacting high performance, since fluidity and segregation resistance of fresh concrete are changed mainly by paste. To improve the fluidity and self-compactibility of concrete, optimum powder ratio of self-compacting high performance concrete using fly ash and blast-furnace slag as powders were calculated. This study was also designed to provide basic materials for suitable design of mix proportion by evaluating fluidity and compactibility by various volume ratios of fine aggregates, paste, and aggregates. As a result, the more fly ash was replaced, the more confined water ratio was reduced because of higher fluidity. The smallest confined water ratio was determined when 15% blast-furnace slag was replaced. The lowest confined water ratio was acquired when 20% fly ash and 15% blast-furnace slag were replaced together. The optimum fine aggregates ratio with the best compactibility was the fine aggregate ratio with the lowest percentage of void in mixing coarse aggregate and fine aggregate In mixing the high performance concrete. Self-compacting high performance concrete with desirable compactibility required more than minimum of unit volume weight. If the unit volume weight used was less than the minimum, concrete had seriously reduced compactibility.

  • PDF

Rheological Properties of Binder Pastes for Self-Compacting Concrete

  • Park, Yon-Dong
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.35-41
    • /
    • 2001
  • This paper investigated rheological properties of binder pastes for self-compacting high performance concrete. Six mixtures of self-compacting concrete were initially prepared and tested to estimate self-compacting property. Then, the binder pastes used in self-compacting concrete were tested for rheological properties using a rotary type rheometer. Binder pastes with different water-binder ratios arid flow values were also examined to evaluate their rheological characteristics. The binders were composed of ordinary Portland cement, fly ash, two types of pulverized blast-furnace slag, and limestone powder. The flow curves of binder pastes were obtained by a rotary type rheometer with shear rate control. Slump flow, O-funnel time, box, and L-flow teats were carried out to estimate self-compacting property of concrete. The flow curves of binder pastes for self-compacting concrete had negligible yield stresses and showed an approximately linear behavior at higher shear rates beyond a certain limit. Test results also indicated that the binders incorporating fly ash are more appropriate than the other types of binders in quality control of self-compacting concrete.

  • PDF

Steel - concrete bond potentials in self-compacting concrete mixes incorporating dolomite powder

  • Kamal, Mounir M.;Safan, Mohamed A.;Al-Gazzar, Mohamed A.
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.273-288
    • /
    • 2013
  • The main objective of this research was to evaluate the potentials of self-compacting concrete (SCC) mixes to develop bond strength. The investigated mixes incorporated relatively high contents of dolomite powder replacing Portland cement. Either silica fume or fly ash was used along with the dolomite powder in some mixes. Seven mixes were proportioned and cast without vibration in long beams with 10 mm and 16 mm steel dowels fixed vertically along the flowing path. The beams were then broken into discrete test specimens. A push-put configuration was adopted for conducting the bond test. The variation of the ultimate bond strength along the flowing path for the different mixes was evaluated. The steel-concrete bond adequacy was evaluated based on normalized bond strength. The results showed that the bond strength was reduced due to Portland cement replacement with dolomite powder. The addition of either silica fume or fly ash positively hindered further degradation as the dolomite powder content increased. However, all SCC mixes containing up to 30% dolomite powder still yielded bond strengths that were adequate for design purpose. The test results demonstrated inconsistent normalized bond strength in the case of the larger diameter compared to the smaller one.

A Study on the Properties of Self-Compacting Concrete according to mixing ratio of Waste Concrete Powder (폐콘크리트 분말의 혼합률에 따른 자기충전 콘크리트의 특성에 관한 연구)

  • Choi, Yun-Wang;Moon, Dae-Joong;Kim, Sung-Su;Choi, Se-Jin;Lee, Seong-Yeun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.513-516
    • /
    • 2006
  • Waste concrete powder(WCP) is a secondary by-product generated while processing waste concrete manufactured to coarse and fine aggregates for concrete. In order to assess the possibility of using WCP as admixture for self-compacting concrete, self-compactability, compressive strength and durability of self-compacting concrete containing waste concrete powder were investigated. Experimental results of this study appeared that in case of SCC mixed with WCP only, self-compactability and compressive strength decreased with increasing mixing ratio of WCP. When Blast-furnace slag(BFS) was added to SCC, self-compactability and compressive strength for a unit amount of cement increased. Also, SCC containing 15% BFS and 15%, 30% and 45% WCP, the dry shrinkage and carbonation depth appeared a tendency to decrease with increasing mixing ratio.

  • PDF

Properties of Self Compacting Concrete Using Viscosity Agent Based on Polysaccharide Derivative (폴리사카라이드계 증점제를 혼합한 고유동 콘크리트의 물성)

  • Choi Jae-Jin;Yoo Jung-Hoon;Shin Do-Cheal;Na Chong-Youl
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05b
    • /
    • pp.45-48
    • /
    • 2005
  • Self compacting concrete has the strong point in capability of concrete to be uniformly filled and compacted in every corners of formwork by its self-weight without vibration during placing. However, powder type self compacting concrete has the weak point in the heat of hydration, the drying shrinkage and the elastic property of concrete etc. Recently viscosity agent has been developed in order to overcome these weaknesses. In this study, self compacting concrete is made with viscosity agent based on polysaccharide derivative in order to develope the normal strength self compacting concrete. Slump flow, loss of slump flow and setting time are measured for comparison with normal concrete. Compressive strength, freezing and thawing test and carbonation test are conducted on normal and self compacting concrete using viscosity agent. In the experiment, we acquired good results in fresh and hardened self compacting concrete using viscosity agent based on polysaccharide derivative.

  • PDF

Effect of pumice powder and artificial lightweight fine aggregate on self-compacting mortar

  • Etli, Serkan;Cemalgil, Selim;Onat, Onur
    • Computers and Concrete
    • /
    • v.27 no.3
    • /
    • pp.241-252
    • /
    • 2021
  • An experimental program was conducted to investigate the fresh properties, mechanical properties and durability characteristics of the self-compacting mortars (SCM) produced with pumice powder and Artificial Lightweight Fine Aggregate (aLWFA). aLWFA was produced by using fly ash. A total of 16 different mixtures were designed with a constant water-binder ratio of 0.37, in which natural sands were partially replaced with aLWFA and pumice powder at different volume fractions of 5%, 10% and 15%. The artificial lightweight aggregates used in this study were manufactured through cold bonding pelletisation of 90% of class-F fly ash and 10% of Portland cement in a tilted pan with an ambient temperature and moisture content. Flowability tests were conducted on the fresh mortar mixtures beforehand, to determine the self-compacting characteristics on the basis of EFNARC. To determine the conformity of the fresh mortar characteristics with the standards, mini-slump and mini-V-funnel tests were carried out. Hardened state tests were conducted after 7, 28 and 56 days to determine the flexural strength and axial compressive strength respectively. Durability, sorptivity, permeability and density tests were conducted at the end of 28 days of curing time. The test results showed that the pumice powder replacement improved both the fresh state and the hardened state characteristics of the mortar and the optimum mixture ratio was determined as 15%, considering other studies in the literature. In the aLWFA mixtures used, the mechanical and durability characteristics of the modified compositions were very close to the control mixture. It is concluded in this study that mixtures with pumice powder replacement eliminated the negative effects of the aLWFA in the mortars and made a positive contribution.