• 제목/요약/키워드: Powder Explosion

검색결과 108건 처리시간 0.025초

메틸에틸케톤 퍼옥사이드의 위험성평가에 관한 연구 (A Study on Risk Assessment of Methyl Ethyl Ketone Peroxide)

  • 목연수
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.34-39
    • /
    • 2005
  • To evaluate characteristics of explosion hazard of Methyl Ethyl Ketone Peroxide, MCPVT was used for this study. In result maximum explosion pressure and maximum explosion pressure rising velocity of MEK-PO were $12.1kgf/cm^2\;and\;106.81kgf/cm^2/s$. As a result or adding metal powder to estimate hazard of explosion, the maximum explosion pressure and maximum explosion pressure rising velocity according to adding Fe powder in MEK-PO increased. In opposite, those decreased resulting in adding Ca powder in MEK-PO.

식품분진의 폭발 특성과 발화온도에 관한 연구 (A study on the explosion properties and Autoignition Temperature of a food additive Dusts)

  • 안형환
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2001년도 춘계학술대회
    • /
    • pp.301-310
    • /
    • 2001
  • A study for the dangerous properties measurment of dust explosion was attended by the various dust concentration on Anthraquinone, Sodiumbenzoic acid, Corn starch, soy sauce powder, and cheese powder. As the result, maximum explosion pressure, the maximum rate of pressure rise, autoigntion temperature, and the water content of dust on lower limit explosion concentration was obtained as follows 1. The lower limit explosion concentration on soy sauce powder with the humidity of 65 to 90% increased by increasing the con tent of moisture, and the effect of dry air and moisture air decreased better in make of dry air. 2. The effect of a various dust concentration on autoigntion temperatures is investigated, If the vessel of dust explosion is small size and the easiness of autoignition was controled by air within the vessel, because it was better decreased air with increasing of dust concentration 3. The maximum explosion pressures of Anthraguinone, sodiumbenzoic acid, com starch, soy sauce powder, and cheese powder were 1.0g/$\ell$, 1.0g/$\ell$, 1.5g/$\ell$, 1.5g/$\ell$, and 1.5g/$\ell$, respectively, and the maximum rate of pressure rise were 0.5g/$\ell$, 0.5g/$\ell$, 1.0g/$\ell$, 1.0g/$\ell$, and 1.0g/$\ell$, respectively.

  • PDF

Synthesis of TiCx Powder via the Underwater Explosion of an Explosive

  • Tanaka, Shigeru;Bataev, Ivan;Hamashima, Hideki;Tsurui, Akihiko;Hokamoto, Kazuyuki
    • Metals and materials international
    • /
    • 제24권6호
    • /
    • pp.1327-1332
    • /
    • 2018
  • In this study, a novel approach to the explosive synthesis of titanium carbide (TiC) is discussed. Nonstoichiometric $TiC_x$ powder was produced via the underwater explosion of a Ti powder encapsulated within a spherical explosive charge. The explosion process, bubble formation, and synthesis process were visualized using high-speed camera imaging. It was concluded that synthesis occurred within the detonation gas during the first expansion/contraction cycle of the bubble, which was accompanied by a strong emission of light. The recovered powders were studied using scanning electron microscopy and X-ray diffraction. Submicron particles were generated during the explosion. An increase in the carbon content of the starting powder resulted in an increase in the carbon content of the final product. No oxide byproducts were observed within the recovered powders.

원료의약품 분진의 폭발 위험성 평가 (Hazard Assesment of Dust Explosion Pharmaceutical Raw Material Powders)

  • 김원성;이근원;우인성;전상용
    • 한국안전학회지
    • /
    • 제33권2호
    • /
    • pp.39-44
    • /
    • 2018
  • Dust explosions are occurring in a variety of industries. A dust explosion caused by a specific energy generates huge amount of energy in the ignition and releases decomposition gas. Damages can be increased since this released decomposition gas can cause second and subsequent explosions. In this study, the goal was to obtain practical information on what could affect the explosion by comparing the characteristics of two kinds of dusts with completely different chemical properties. Three kinds of dusts were measured and evaluated for explosion pressure, dust explosion index, explosion limit and minimum ignition energy. It is possible to grasp the characteristics of each dust and use it as useful accident prevention data in the production of raw material powder.

Morphology, Phase Contents, and Chemical Composition of Nanopowders Produced by the Electrical Explosion of Tin-Lead Alloy Wires

  • Kwon, Young-Soon;P. Ilyin, Alexander;V. Tichonov, Dmitrii
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.157-160
    • /
    • 2003
  • Phase contents and elemental composition of ultradispersed powders obtained by the electrical explosion of tin-leadalloy powders are investigated. It is demonstrated that during the explosion and subsequent cooling, surface layers of powder particles are enriched in lead compared to the initial alloy. The thermal stability of powders oxidizing in air is also investigated.

동시 전기 폭발법에 의한 나노 합금 분말 제조에 관한 연구 Part I - 동시 전기 폭발을 위한 이론적 배경 (A Study on the Nano Alloy Powders Synthesized by Simultaneous Pulsed Wire Evaporation (S-PWE) Method, Part I - Background)

  • 이근희;이창규;김흥회;;;권영순
    • 한국분말재료학회지
    • /
    • 제11권1호
    • /
    • pp.60-68
    • /
    • 2004
  • Pulsed wire evaporation (PWE) method is known as the promising production-technique for nanopowders. In this study, we developed and modified the previous single wire explosion equipment to the simultaneous two-wire explosion one for the fabrication of alloy or mixture of nano metallic powder. First of all, both the theoretical and empirical background of pulsed wire explosion of single wire were summarized, and compared with our experimental results for Cu and Al single wlre explosion. After then, the simultaneous wire evaporation equipment was designed, constructed, and tested. The current and voltage behavior were well matched between the calculated ones from the circuit equations, and the experimental results from simultaneous explosion of Cu and Al wire.

알루미늄 분체의 폭발위험성과 화염전파속도 (Explosion Hazards and Flame Velocity in Aluminum Powders)

  • 한우섭;이수희
    • 한국가스학회지
    • /
    • 제16권5호
    • /
    • pp.7-13
    • /
    • 2012
  • 알루미늄 분진폭발특성에 미치는 입경과 농도 변화에 따른 영향을 20 L 구형 분진폭발시험장치를 사용하여 실험적으로 조사하였다. 실험에 사용한 알루미늄 분진의 체적 평균 입경은 15.1 및 $34.8{\mu}m$이다. 실험결과, 평균 입경 $15.1{\mu}m$에서의 폭발하한농도(LEL)는 $40g/m^3$, 최대폭발압력($P_{max}$)은 9.8 bar, 폭발압력상승속도는 ($[dP/dt]_{max}$)는 1852 bar/s이었으며, 평균입경 $34.8{\mu}m$의 경우에는 LEL이 $70g/m^3$, $P_{max}$는 7.9 bar, $[dP/dt]_{max}$는 322 bar/s가 얻어졌다. Al분진의 폭발하한농도는 입경 증가에 따라 증가하는 경향이 관찰되었다. 또한 평균입경 $15.1{\mu}m$에서의 Al분진폭발압력으로부터의 화염전파속도의 계산값은 평균입경 $34.8{\mu}m$의 경우보다 5배의 크기를 나타내었다.

Regulation of the Dispersed Composition of Aluminum Oxide Nanopowders Produced by Electrical Explosion

  • Kwon, Young-Soon;B. Nazarenko, Olga;P. Ilyin, Alexander
    • 한국분말재료학회지
    • /
    • 제10권3호
    • /
    • pp.161-163
    • /
    • 2003
  • The feasibility of obtaining highly dispersed aluminum oxide powders by the electrical explosion of aluminum conductors in an inert gas atmosphere and the subsequent oxidation of aluminum particles by water prior to their contact with air is demonstrated. For a specific surface area of the initial aluminum powder of 6.5$m^2$/g, the corresponding specific surface area of the resultant aluminum oxide nanopowder was as large as 300$m^2$/g.