• Title/Summary/Keyword: Powder Compacts

Search Result 303, Processing Time 0.022 seconds

Densification Analysis for SiC Powder under Cold Compaction (냉간압축 하에서 실리콘 카바이드 분말의 치밀화해석)

  • Park, Hwan;Kim, Ki-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.6
    • /
    • pp.589-595
    • /
    • 2000
  • Densification behavior of SiC powder was investigated under cold compaction. A special form of the Cap model was proposed from experimental data of SiC powder under triaxial compression. To compare with experimental data of SiC powder under cold compaction, the proposed constitutive model was implemented into a finite element program (ABAQUS). Finite element calculations from the Cam-Clay model and the modified Drucker-Prager model were also compared with experimental data of SiC powder. The agreements between experimental data and finite element results obtained from the proposed constitutive model are reasonably good. In die pressing, finite element results obtained from the Cam-Clay model and the modified Drucker-Prager model, however, show lower average density of SiC powder compacts compared to experimental data.

  • PDF

The Role of Grain Boundary Diffusion in the Activated Sintering of Tungsten Powder (텅스텐 활성소결에서 입계확산의 역할)

  • 이재성
    • Journal of Powder Materials
    • /
    • v.1 no.1
    • /
    • pp.79-84
    • /
    • 1994
  • The mechanism of activated sintering of tungsten powder was discussed in terms of diffusion and segregation of activator atoms at W grain boundaries. Shrinkage behaviours of W-0.2wt.% Ni, W-0.2wt.% Cu or pure W powder compacts during sintering at low temperatures of 900~ $1200^{\circ}C$ were investigated. It was found that the Cu additive inhibits sintering process causing lower densification than pure W compact while remarkable shrinkage occurred in the Ni added W powder. Such contrary effect was explained by comparing self diffusion processes along Ni or Cu segregated W boundaries in which Ni segregants enhance but Cu atoms retard the migration of W atoms at W boundaries.

  • PDF

EFFICIENT SINTERING AND HARDENING OF LOW ALLOY IRON POWDER COMPACTS IN ONE STEP IN THE CONVEYOR BELT SINTERING FURNACE

  • Warga, Diter;Lindberg, Caroline
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1994.04c
    • /
    • pp.7-7
    • /
    • 1994
  • For more than a decade components of low alloy iron powder with nickel and/or molybdenum for general engineering applications have been manufactured from powder metal. In the time to come such PM steel components will gain increasing significance. Because of various manufacturing difficulties they are mostly produced in two separate steps - sintering and hardening - which means high energy and labour requirements. The paper describes how such PM components are produced in just one run through a conveyor belt furnace with automatic atmosphere control and gas quenching zone. Energy and labour costs are low and reproducible quality is exceilent. The mechanical properties obtained with some powder alloys are presented as well.

  • PDF

New Process for Ti Alloy Powder Production by Using Gas Atomization

  • Fujita, Makoto;Arimoto, Nobuhiro;Nishioka, Kazuo;Miura, Hideshi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.12-13
    • /
    • 2006
  • The spherical and high quality Titanium fine powder "Tilop" has been produced with gas atomization furnace, Sumitomo Titanium Corporation originally designed. Recently, a new process which can produce Ti-alloy(Ti-6Al-4V) powders by utilizing our gas atomization process, of which raw material is sponge titanium pre-mixed with alloy chips or granules has been also developed. The particle size of gas atomized Ti-alloy powder and the mechanical properties of sintered Ti-alloy compacts prepared by metal injection molding were discussed in this study.

  • PDF

다공질 금속의 소성 항복 거동

  • 김형섭;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1992.03a
    • /
    • pp.59-70
    • /
    • 1992
  • Appropriate yield criteria are necessary to perform computer simulation for densification processes of powder compacts and sintered metals. Various yield functions have been reviewed and a new form for yield criterion has been advanced. The yield criterion satisfies experimental results from combined tension and torsion tests of sintered porous iron specimens.

  • PDF