• Title/Summary/Keyword: Powder Compacts

Search Result 303, Processing Time 0.027 seconds

Electroless Copper Plating on 304L Stainless Steel Powders and Corrosion Resistance of the Sintered Compacts of Composite Powders (304L 스테인리스강 분말의 내식성 개선을 위한 무전해 구리 도금과 분말 소결체의 내식성 조사 연구)

  • Ahn, Jae-Woo;Lee, Jae-Hoon
    • Korean Journal of Metals and Materials
    • /
    • v.47 no.2
    • /
    • pp.79-90
    • /
    • 2009
  • A study has been made about the effects of powder content, reaction temperature, reaction time, and stirring speed on the preparation of the stainless steel(STS) 304L powders plating with copper by an electroless plating method. The behavior of corrosion resistance of the sintered STS-Cu composite powders was also investigated by the salt spraying test The electroless plating technique was an effective method to manufactur the copper-uniform plating composite powders, the corrosion resistance of this sintered specimen was improved bysuppressing Cr precipitates on grain boundaries in the sintered compacts of composite powders.

The Effect of Si3N4 Addition on Nitriding and Post-Sintering Behavior of Silicon Powder Mixtures

  • Park, Young-Jo;Ko, Jae-Woong;Lee, Jae-Wook;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.49 no.4
    • /
    • pp.363-368
    • /
    • 2012
  • Nitriding and post-sintering behavior of powder mixture compacts were investigated. As mixture compacts are different from simple Si compacts, the fabrication of a sintered body with a mixture composition has engineering implications. In this research, in specimens without a pore former, the extent of nitridation increased with $Si_3N_4$ content, while the highest extent of nitridation was measured in $Si_3N_4$-free composition when a pore former was added. Large pores made from the thermal decomposition of the pore former collapsed, and they were filled with a reaction product, reaction-bonded silicon nitride (RBSN) in the $Si_3N_4$-free specimen. On the other hand, pores from the decomposed pore former were retained in the $Si_3N_4$-added specimen. Introduction of small $Si_3N_4$ particles ($d_{50}=0.3{\mu}m$) into a powder compact consisting of large silicon particles ($d_{50}=7{\mu}m$) promoted close packing in the green body compact, and resulted in a stable strut structure after decomposition of the pore former. The local packing density of the strut structure depends on silicon to $Si_3N_4$ size ratio and affected both nitriding reaction kinetics and microstructure in the post-sintered body.

Numerical simulation of dimensional changes during sintering of tungsten carbides compacts

  • Bouvard, D.;Gillia, O.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.10a
    • /
    • pp.7-7
    • /
    • 1997
  • During sintering of very porous green bodies, as obtained by compaction of hard powders - such as tungsten carbide or ceramics - or by injection moulding, important shrinkage occurs. Due to heterogeneous green density field, gravity effects, friction on the support, thermal gradients, etc., this shrinkage is often non-uniform, which' may induce significant shape changes. As the ratio of compact dimension to powder size is very high, the mechanics of continuum is relevant to model such phenomena. Thus numerical techniques, such as the finite element method can be used to simulate the sintering process and predict the final shape of the sintered part. Such type of simulation has much been developed in the last decade firstly for hot isostatic pressing and next for die compaction. Finite element modelling has been recently applied to free sintering. The simulation of sintering should be based on constitutive equations describing the thermo-mechanical behaviour of the material under any state of stress and any temperature which may arise within the sintering body. These equations can be drawn either from experimental data or from micromechanical models. The experiments usually consist in free sintering and sinter-forging tests. Indeed applying more complex loading conditions at high temperature under controlled atmosphere is delicate. Micromechanical models describe the constitutive behaviour of aggregates of spheres from the deformation of two-sphere contact either by viscous flow or grain boundary diffusion. Such models are not able to describe complex microstructure and mechanisms as observed in real materials but they can give some basic information on the formulation of constitutive equations. Practically both experimental and theoretical approaches can be coupled to identify the constitutive equations. Such procedure has been performed for modelling the sintering of compacts obtained by die pressing of a mixture of tungsten carbide and cobalt powders. The constitutive behaviour of this material during sintering has been described by a linear viscous constitutive model, whose functions have been fitted from results of free sintering and sinter-forging experiments. This model has next been introduced in ABAQUS finite element code to simulate the sintering of heterogeneous green compacts of various geometries at constant temperature. Examples of simulations are shown and compared with experiments.

  • PDF

Mapping Particle Size Distributions into Predictions of Properties for Powder Metal Compacts

  • German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.704-705
    • /
    • 2006
  • Discrete element analysis is used to map various log-normal particle size distributions into measures of the in-sphere pore size distribution. Combinations evaluated range from monosized spheres to include bimodal mixtures and various log-normal distributions. The latter proves most useful in providing a mapping of one distribution into the other (knowing the particle size distribution we want to predict the pore size distribution). Such metrics show predictions where the presence of large pores is anticipated that need to be avoided to ensure high sintered properties.

  • PDF

Effect of Passivation on the Sintering Behavior of Submicron Nickel Powder Compacts for MLCC Application

  • Jo, Gi-Young;Lee, Kwi-Jong;Kang, Suk-Joong L.
    • Journal of Powder Materials
    • /
    • v.20 no.6
    • /
    • pp.405-410
    • /
    • 2013
  • During sintering of Ni-electrode multi-layer ceramic capacitors (MLCCs), the Ni electrode often becomes discontinuous because of its lower sintering temperature relative to that of $BaTiO_3$. In an attempt to retard the sintering of Ni, we introduced passivation of the Ni powder. To find the optimal passivation conditions, a thermogravimetric analysis (TGA) was conducted in air. After passivation at $250^{\circ}C$ for 11 h in air, a nickel oxide shell with a thickness of 4-5 nm was formed on nickel nanoparticles of 180 nm size. As anticipated, densification of the compacts of the passivated Ni/NiO core-shell powder was retarded: the starting temperature of densification increased from ${\sim}400^{\circ}C$ to ${\sim}600^{\circ}C$ in a $97N_2-3H_2$ (vol %) atmosphere. Grain growth was also retarded during sintering at temperatures of 750 and $1000^{\circ}C$. When the sintering atmosphere was changed from wet $99.93N_2-0.07H_2$ to wet $99.98N_2-0.02H_2$, the average grain size decreased at the same sintering temperature. The conductivity of the passivated powder sample sintered at $1150^{\circ}C$ for 8 h in wet $99.93N_2-0.07H_2$ was measured to be $3.9{\times}10^4S/cm$, which is comparable with that, $4.6{\times}10^4S/cm$, of the Ni powder compact without passivation. These results demonstrate that passivation of Ni is a viable means of retarding sintering of a Ni electrode and hence improving its continuity in the fabrication of $BaTiO_3$-based multi-layer ceramic capacitors.

Synthesis and Sintering of Cordierite by using Coprecipitation Method (공침법에 의한 Cordierite분말의 합성 및 소결에 관한 연구)

  • 한문희;박금철
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.7
    • /
    • pp.899-906
    • /
    • 1990
  • The cordierite powders were prepared from Mg(NO3)2.6H2O, Al(NO3)3.9H2O and colloidal silica by the coprecippitation method, and the sintering behavior of the powders were investigated. Two different methods were applied for producing the precursor powders. The one was to added the aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O to NH4OH to adjust pH at 10 where the colloidal silica of pH 10 was added. The other wa to add the aqueous solution of Mg(NO3)2.6H2O and Al(NO3)3.9H2O to the colloidal silica with NH4OH to control the final mixture to be at pH 10. It was confirmed that more homogeneous powders were obtained from the latter method. The firing linear shrinkage of the powder compacts fabricated from the calcined powder between 90$0^{\circ}C$ and 110$0^{\circ}C$ was found to be larger as the calcination temperature was low. But all of them stopped shrinking around 120$0^{\circ}C$. The powder compacts, fabricated using the calcined powders at 90$0^{\circ}C$ and 95$0^{\circ}C$ for 2hours and sintered at 142$0^{\circ}C$ for 2hours, showed relative density of 93-96%, 3-point bending strength of 81-83MPa, KIC of 1.9-2.4 MPam1/2 and thermal expansion coefficient of 0.213-0.732$\times$10-6$^{\circ}C$.

  • PDF

Densification of Metal Injection Molding Parts Made of Ball Milled W-20%Cu Powders (볼밀링한 W-20wt%Cu 분말로 제조된 금속사출성형 부품의 조밀화)

  • 김순욱;류성수;문인형
    • Journal of Powder Materials
    • /
    • v.7 no.4
    • /
    • pp.228-236
    • /
    • 2000
  • An investigation was carried out on the possibility whether the ball-milling process of low energy could successfully improve the packing density and flowability for MIM application in W-20wt%Cu system. In this study, W-20wt%Cu powder mixture was prepared by ball-milling. W powder was not fractured by low mechanical impact energy used in the present work during the critical ball-milling time, but the ductile Cu powder was easily deformed to the 3 dimensional equiaxed shape, having the particle size similar to that of W powder. The ball-milled mixture of W-20wt%Cu powder had the more homogeneous distribution of each component and the higher amount of powder loading for molding than the simple mixture of W-Cu powder with an irregular shape and a different size. Accordingly, the MIM W(1.75)-20wt%Cu powder compacts were able to be sintered to the relative density of 99% by sintering at $1400^{\circ}C$ for one hour.

  • PDF

Accumulative Roll-Bonding of Al Powder Compact Fabricated by a Powder-in Sheath Rolling Method (분말피복압연법에 의해 제조된 Al 분말성형체의 반복겹침접합압연)

  • Lee, Seong-Hee
    • Journal of Powder Materials
    • /
    • v.12 no.1
    • /
    • pp.30-35
    • /
    • 2005
  • An aluminum powder compact consolidated by a powder-in sheath rolling (PSR) method was severely deformed by accumulative roll-bonding (ARB) process. The ARB process was performed up to 8 cycles at ambient temperature without lubrication. Optical microscope and transmission electron microscope observations revealed that microstructure of the ARB-processed Al powder compact is inhomogeneous in the thickness direction. The ultra-fine subgrains often reported in the ARB-processed bulky materials were also developed near surface of the Al powder compacts in this study. Tensile strength of the ARB-processed Al powder compact increased at the 1st cycle, but from the 2nd cycle it rather decreased slightly.