• Title/Summary/Keyword: Potentiodynamic method

Search Result 83, Processing Time 0.033 seconds

Surface Characteristics of Type II Anodized Ti-6Al-4V Alloy for Biomedical Applications

  • Lee, Su-Won;Jeong, Tae-Gon;Yang, Jae-Ung;Jeong, Jae-Yeong;Park, Gwang-Min;Jeong, Yong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.77-77
    • /
    • 2017
  • Titanium and its alloys offer attractive properties in a variety of applications. These are widely used for the field of biomedical implants because of its good biocompatibility and high corrosion resistance. Titanium anodizing is often used in the metal finishing of products, especially those can be used in the medical devices with dense oxide surface. Based on SAE/AMS (Society of Automotive Engineers/Aerospace Material Specification) 2488D, it has the specification for industrial titanium anodizing that have three different types of titanium anodization as following: Type I is used as a coating for elevated temperature forming; Type II is used as an anti-galling coating without additional lubrication or as a pre-treatment for improving adherence of film lubricants; Type III is used as a treatment to produce a spectrum of surface colours on titanium. In this study, we have focused on Type II anodization for the medical (dental and orthopedic) application, the anodized surface was modified with gray color under alkaline electrolyte. The surface characteristics were analyzed with Focused Ion Beam (FIB), Scanning Electron Microscopy (SEM), surface roughness, Vickers hardness, three point bending test, biocompatibility, and corrosion (potentiodynamic) test. The Ti-6Al-4V alloy was used for specimen, the anodizing procedure was conducted in alkaline solution (NaOH based, pH>13). Applied voltage was range between 20 V to 40 V until the ampere to be zero. As results, the surface characteristics of anodic oxide layer were analyzed with SEM, the dissecting layer was fabricated with FIB method prior to analyze surface. The surface roughness was measured by arithmetic mean deviation of the roughness profile (Ra). The Vickers hardness was obtained with Vickers hardness tester, indentation was repeated for 5 times on each sample, and the three point bending property was verified by yield load values. In order to determine the corrosion resistance for the corrosion rate, the potentiodynamic test was performed for each specimen. The biological safety assessment was analyzed by cytotoxic and pyrogen test. Through FIB feature of anodic surfaces, the thickness of oxide layer was 1.1 um. The surface roughness, Vickers hardness, bending yield, and corrosion resistance of the anodized specimen were shown higher value than those of non-treated specimen. Also we could verify that there was no significant issues from cytotoxicity and pyrogen test.

  • PDF

Corrosion Behavior of Dental Alloys Cast by Various Casting Methods (치과용 주조합금의 주조방법에 따른 부식거동)

  • Choe Han-Cheol;Ko Yeong-Mu
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.296-300
    • /
    • 2004
  • The defects of partial denture frameworks are mainly shrinkage porosity, inclusions, micro-crack, particles from investment, and dendritic structure. In order to investigate a good casting condition of partial denture frameworks, the three casting alloys and casting methods were used and detected casting defects were analyzed by using electrochemical methods. Three casting alloys (63Co-27Cr-5.5Mo, 63Ni-16Cr, 63Co-30Cr-5Mo) were prepared for fabricating partial denture frameworks with various casting methods; centrifugal casting (Kerr, USA), high frequency induction casting (Jelenko Eagle, USA), vacuum pressure casting (Bego, Germany). The casting temperature was $1,380^{\circ}C$ (63Co-27Cr-5.5Mo and 63Ni-16Cr) and $1,420^{\circ}C$ (63Co-30Cr-5Mo). The casting morphologies were analyzed using FE-SEM and EDX. The corrosion test of the dendritic structure was performed through potentiodynamic method in 0.9% NaCl solutions at $36.5^{\circ}C$ and corrosion surface was observed using SEM. The defects of partial denture frameworks improved in the order of centrifugal casting, high frequency induction casting, and vacuum pressure casting method, especially, pore defects were found at part of clasp in the case of centrifugal casting method. The structure of casting showed dendritic structure for three casting alloys. In the 63Co-27Cr-5.5Mo and 63Co-30Cr-5Mo, $\alpha$-Co and $\varepsilon$-Co phases were identified at matrix and $${\gamma}$-Ni_2$Cr second phase were shown in 63Ni-16Cr. Also, the corrosion resistance of cast structure increased in the order of vacuum pressure casting, high frequency induction casting, and centrifugal casting method.

Preparation of TiO2-SiO2 Organic-Inorganic Hybrid Coating Material by Sol-gel Method and Evaluation of Corrosion Characteristics (졸-겔법에 의한 유·무기 TiO2-SiO2 혼성(Hybrid)코팅재료의 제조 및 부식 특성 평가)

  • Noh, J.J.;Maeng, W.Y.
    • Corrosion Science and Technology
    • /
    • v.14 no.2
    • /
    • pp.64-75
    • /
    • 2015
  • Single $TiO_2$ coating prepared by sol-gel process usually experiences cracks in coating layer. In order to prevent cracks, an inorganic-organic hybrid $TiO_2-SiO_2$ coating was synthesized by combining precursors with an organic functional group. Five different coatings with various ratios of (1:8, 1:4, 1:1, 1:0.25 and 1:0.125) titanium alkoxide (TBOT, Tetrabutylorthotitanate) to organo-alkoxysilane (MAPTS, ${\gamma}$-Methacryloxy propyltrimethoxysilane) on carbon steel substrate were made by sol-gel dip coating. The prepared coatings were analyzed to study the coating properties (surface crack, thickness, composition) by scanning electron microscope (SEM), focused ion beam (FIB), and Fourier transform infrared spectroscopy (FT-IR). Potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) were also performed to evaluate the corrosion characteristics of the coatings. Crack free $TiO_2-SiO_2$ hybrid coatings were prepared with the optimization of the ratio of TBOT to MAPTS. The corrosion rates were significantly decreased in the coatings for the optimized precursor ratio without cracks.

Atmospheric Effects on Corrosion of Iron in Borate Buffer Solution (Borate 완충용액에서 철의 부식에 대한 대기의 영향)

  • Kim, Hyun-Chul;Kim, Younkyoo
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.6
    • /
    • pp.673-678
    • /
    • 2012
  • Using potentiodynamic and linear polarization method, the atmospheric effect on the corrosion of iron in borate buffer solution was investigated. The corrosion of iron was heavily influenced by the degree of oxygen concentration. The supply of reduction current was increased by the reduction of dissolved oxygen, and the corrosion potential of iron was shifted to the positive side. The $OH^-$ ion, which was produced through the reduction of either water or oxygen, significantly increased the $OH^-$ ion concentration inside of the electrical double layers of iron electrode, and facilitated the adsorption of $OH^-$ ion on the surface of the iron electrode. The adsorption of $OH^-$ ion on the iron electrode can be explained either by Langmuir isotherm or by Temkin logarithmic isotherm.

The Effect of Al and Sn Additions on Corrosion Behavior of Permanent Mold Casting Magnesium Alloy (금형 주조한 마그네슘 합금의 부식 거동에 미치는 Al 및 Sn의 영향)

  • Kim, Byeong Ho;Seo, Jae Hyun;Park, Kyung Chul
    • Journal of Korea Foundry Society
    • /
    • v.35 no.2
    • /
    • pp.36-43
    • /
    • 2015
  • In this study, the influences of aluminum and tin additions (individual and combined) on corrosion behavior of magnesium alloy have been determined. The studied alloys were fabricated by permanent mold casting method to measure the corrosion properties, a potentiodynamic test, hydrogen evolution test and immersion test were carried out in a 3.5% NaCl solution at pH 7.2. From the results of microstructure analysis, the Mg-9Al-1Zn alloy was found to be composed of ${\alpha}$-Mg and rod-like $Mg_{17}Al_{12}$ phase and the Mg-5Sn-5Al-1Zn alloy was found to be composed of ${\alpha}$-Mg, rod-like $Mg_{17}Al_{12}$ and $Mg_2Sn$ phases. In the case of the Mg-9Sn-1Zn alloy, the microstructure was composed of ${\alpha}$-Mg and eutectic $Mg_2Sn$ phase. With Sn addition (individual and combined), the corrosion resistance of the Mg alloys improved.

The electrical and corrosion properties of polyphenylene sulfide/carbon composite coated stainless steel bipolar plate for PEM fuel cell

  • Lee, Yang-Bok;Kim, Kyung-Min;Park, Yu-Chun;Hwang, Eun-Ji;Lim, Dae-Soon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.89.2-89.2
    • /
    • 2011
  • Stainless steel bipolar plates have many advantage such as high electrical conductivity and mechanical strength and low fabrication cost. However, they need a passivation layer due to low corrosion resistance under PEM fuel cell operation condition. In this study, polyphenyene sulfide(PPS)/carbon composite coated stainless steel bipolar plates were fabricated by compression molding method after PPS/carbon composite sprayed on the stainless steel plate. PPS and carbon were chosen as the binder and conductive filler of passivation layer, respectively. The interfacial contact resistance and corrosion resistance of PPS/carbon composite coated stainless steel bipolar plates were investigated and compared to the stainless steel. The PPS/carbon composite coated stainless steel compared to stainless steel was improved interfacial contact resistance. The results of the potentiodynamic and potentiostatic measurements also showed that the PPS/carbon composite coated stainless steel did not corroded under PEM fuel cell operating conditions.

  • PDF

Anticorrosion Coatings Obtained by Plasma Electrolytic Oxidation on Implant Metals and Alloys

  • Sinebryukhov, S.L.;Gnedenkov, S.V.;Khrisanfova, O.A.;Puz', A.V.;Egorkin, V.S.;Zavidnaya, A.G.
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.91-100
    • /
    • 2018
  • Development of biodegradable implants for treatment of complex bone fractures has recently become one of the priority areas in biomedical materials research. Multifunctional corrosion resistant and bioactive coatings containing hydroxyapatite $Ca_{10}(PO_4)_6(OH)_2$ and magnesium oxide MgO were obtained on Mg-Mn-Ce magnesium alloy by plasma electrolytic oxidation. The phase and elemental composition, morphology, and anticorrosion properties of the coatings were investigated by scanning electron microscopy, energy dispersive spectroscopy, potentiodynamic polarization, and electrochemical impedance spectroscopy. The PEO-layers were post-treated using superdispersed polytetrafluoroethylene powder. The duplex treatment considerably reduced the corrosion rate (>4 orders of magnitude) of the magnesium alloy. The use of composite coatings in inducing bioactivity and controlling the corrosion degradation of resorbable Mg implants are considered promising. We also applied the plasma electrolytic oxidation method for the formation of the composite bioinert coatings on the titanium nickelide surface in order to improve its electrochemical properties and to change the morphological structure. It was shown that formed coatings significantly reduced the quantity of nickel ions released into the organism.

Theoretical and Experimental Studies on the Adsorption of N-[(E)-Pyridin-2-ylmethylidene] Aniline, a Schiff Base, on Mild Steel Surface in Acid Media

  • N, Mohanapriya.;M, Kumaravel.;B, Lalithamani.
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.2
    • /
    • pp.117-131
    • /
    • 2020
  • The adsorption of N-[(E)-Pyridin-2-ylmethylidene] aniline, a Schiff base, on to mild steel surface in 1M HCl and 0.5 M H2SO4 solutions and the consequent corrosion protection were studied employing weight loss method, electrochemical impedance spectroscopy and potentiodynamic polarization measurements. DFT calculations were performed to investigate its interaction with the metal surface at the atomic level to understand its inhibition mechanism. The adsorption process is well described by the Langmuir isotherm. The thermodynamic parameters indicated that the adsorption is spontaneous and the interaction of the inhibitor at the mild steel surface is mainly through physisorption. The Ra values obtained in AFM studies for the uninhibited and inhibited sample in HCl media respectively are 0.756 and 0.559 ㎛, and that in H2SO4 media are 0.411 and 0.406 ㎛. The lesser roughness values of the inhibited sample shows the adsorption of the molecules onto the mild surface. The inhibition efficiencies were found to improve with concentration of the inhibitor and the maximum efficiency was observed at 400ppm in all the investigation methods adopted. The inhibitor was found to exhibit a higher efficiency in HCl media (95.7%) than in H2SO4 (92.8%). The theoretical and experimental results are found to be in good agreement.

Pitting Characteristics and Electrochemical Polarization Behaviors in Al-Cu-Si-Mg-Ag-Zr Alloys with Ageing (Al-Cu-Li-Mg-Ag-Zr합금의 시효에 따른 전기화학적 분극 거동과 공식특성)

  • Min, B.C.;Chung, D.S.;Shon, T.W.;Cho, H.K.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.9 no.2
    • /
    • pp.103-111
    • /
    • 1996
  • In this paper, we studied on both electrochemical polarization behaviors and pitting characteristics of ultra high strength Al-Cu-Li-Mg-Ag-Zr alloys(named C1 and C2) and 2090 alloy according to their treatments in the deaerated 3.5% NaCl, using by the potentiodynamic and the potentiostatic method, SEM micrograph and surface roughness including depth of pitting attack. With the cyclic polarization curves, the hysteresis of the C1 and C2 alloys appeared more remarkably than that of the 2090 alloy, because of precipitation microstructural difference between C1, C2 alloys and 2090 alloy. In the pitting experiments, the correlations between pitting growth and aging conditions were analyzed with the SEM micrograph and measurement of the pit depth.

  • PDF

The Effect of Ce Addition on Corrosion Behavior of Permanent Mold Casting Mg-4Al-2Sn-1Ca alloy (금형 주조한 Mg-4Al-2Sn-1Ca 합금의 부식 거동에 미치는 Ce 첨가의 영향)

  • Park, Kyung Chul;Kim, Byeong Ho;Jung, Jae Woong;Cho, Dae Hyun;Park, Ik Min
    • Journal of Korea Foundry Society
    • /
    • v.34 no.6
    • /
    • pp.187-193
    • /
    • 2014
  • In the present work, the effect of adding Ce on the corrosion behavior of Mg-4Al-2Sn-1Ca alloy was investigated. The studied alloys were fabricated by gravity casting method and a potentiodynamic polarization, A.C. impedance and hydrogen evolution tests were carried out in a 3.5% NaCl solution with pH 7.2 at room temperature to measure the corrosion properties of Mg-4Al-2Sn-1Ca-xCe alloys. The microstructure of the Mg-4Al-2Sn-1Ca alloy was composed of ${\alpha}$-Mg, Mg17Al12, Mg2Sn and CaMgSn phase. Also, a $Al_{11}Ce_3$ phase was newly formed by the addition of Ce. With an increase of the Ce contents, the microstructure became refined and the corrosion resistance improved.