• Title/Summary/Keyword: Potential value

Search Result 4,139, Processing Time 0.03 seconds

Effect of Zeta Potential on Fractional Precipitation for the Purification of Paclitaxel from Plant Cell Cultures of Taxus chinensis (주목 식물세포(Taxus chinensis) 배양 유래 Paclitaxel 정제를 위한 분별침전에서 제타전위 영향)

  • Ryu, Heung Kon;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.114-120
    • /
    • 2014
  • This study evaluated the effect of the zeta potential of silica-alumina on the behavior, in terms of purity, yield, fractional precipitation time, precipitate shape, size of fractional precipitation in the increased surface area, and the fractional precipitation process, for the purification of paclitaxel. As the zeta potential value of silica-alumina increased, the yield of paclitaxel concurrently increased while the precipitation time decreased. The use of alumina with the highest value of the zeta potential (+35.41 mV) as a surface area-increasing material dramatically reduced the precipitation time by 12 h compared with the results of the control. On the other hand, the purity of paclitaxel had almost no effect on changes in the zeta potential of silica-alumina. In addition, the precipitate size was inversely correlated with the absolute value of the zeta potential.

A Method for Simultaneous Measurement of Air Kerma, Half Value Layer and Tube Potential in Quality Control Procedure of Diagnostic x ray units

  • Katoh, Tsuguhisa;Saitoh, Hidetoshi;Ohtani, Hiroki;Negishi, Tooru;Myojoyama, Atsushi;Ohno, Yuusuke;Sasaki, Takehito
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.294-297
    • /
    • 2002
  • For the quality control procedure of diagnostic x ray units, a method for simultaneous measurement of air kerma, half value layer and tube potential was developed utilizing a computed radiography system for intraoral radiography and film badge case. The response of average pixel values under the windows were calibrated by x rays generated at tube potentials from 40 to 140 kV with filtration from 1.5 to 3.7 mmAl. The calibration curves for half value layer and tube potential were derived as functions of attenuation factors by the 1.4 mmAl filter and the 0.2 mmCu filter. The energy dependency of the open window response was corrected by the calibration factor as a function of the attenuation factor by the 1.4 mmAl filter. The uncertainty of the estimated half value layer, tube potential and air kerma were 0.2 mmAl, 3.6 % and 5 %, respectively. It was thus suggested that this system could be applied to quality control program to detect the variation of working condition of x ray units in clinical use.

  • PDF

Passenger Flow Analysis at Transit Connecting Path (철도 환승 연결로에서의 여객 유동 해석)

  • Nam, Seongwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.415-420
    • /
    • 2020
  • Crowd flows occur in metropolitan railway transit stations, terminals, multiple buildings, and stadiums and are important in ensuring the safety as well as smooth flow of pedestrians in these facilities. In this study, the author developed a new computational analysis method for crowd flow dynamics and applied it to models of transit connecting paths. Using the analysis method, the potential value of the exit was assigned the smallest value, and the potential value of the surrounding grids gradually increased to form the overall potential map. A pathline map was then constructed by determining the direction vector from the grid with large potential value to the grid and small potential. These pathlines indicate basic routes of passenger flow. In all models of the analysis object, the pedestrians did not move to the first predicted shortest path but instead moved using alternative paths that changed depending on the situation. Even in bottlenecks in which pedestrians in both directions encountered each other, walking became much smoother if the entry time difference was dispersed. The results of the analysis show that a method for reducing congestion could be developed through software analysis such as passenger flow analysis without requiring hardware improvement work at the railway station.

Evaluation on Steel Bar Corrosion Embedded in Antiwashout Underwater Concrete

  • Moon Han-Young;Shin Kook-Jae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.2 s.86
    • /
    • pp.303-309
    • /
    • 2005
  • This study aims the evaluation of the corrosion of steel bar embedded in antiwashout underwater concrete, which has rather been neglected to date. To that goal, accelerated steel bar corrosion tests have been performed on three series of steel bar-reinforced antiwashout underwater concrete specimens manufactured with different admixtures. The three series of antiwashout underwater concrete were: concrete constituted exclusively with ordinary portland cement (OPC), concrete composed of ordinary portland cement mixed with fly-ash in $20\%$ ratio (FA20), and concrete with ground granulated blast furnace slag mixed in $50\%$ ratio (BFS50). The environment of manufacture was in artificial seawater. Measurement results using half-cell potential surveyor showed that, among all the specimens, steel bar in OPC was the first one that exceeded the threshold value proposed by ASTM C 876 with a potential value below -350mv after 14 cycles. And, the corresponding corrosion current density and concentration of water soluble chloride were measured as $30{\mu}A/mm^2$ and $0.258\%$. On the other hand, for the other specimens that are FA20 and BFS50, potential values below -350mV were observed later at 18 and 20 cycles, respectively. Results confirmed the hypothesis that mineral admixtures may be more effective on delay the development of steel bar corrosion in antiwashout underwater concrete.

Comparison of Theoretical Resu Its and Measured Data Using Hemispherical Water Tank Model for Potential Rise of Structure Grounding (구조체 접지의 전위상승에 대한 반구형 수조에 의한 측정값과 계산값의 비교)

  • Gil, Hyoung-Jun;Choi, Chung-Seog;Kim, Hyang-Kon;Han, Woon-Ki;Lee, Bok-Hee
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.111-114
    • /
    • 2005
  • This paper presents a comparison of experimental value by hemispherical grounding simulation system and calculated value by CDEGS program for ground potential rise of structure. When a test current flowed through structure grounding electrodes, ground potential rise was measured and analyzed for types of structure using the hemispherical grounding simulation system in real time, and was computed by means of CDEGS program. The model structures were designed and fabricated with two types on a scale of one-one hundred sixty. When the experimental data were compared with the theoretical values, the similar profile was shown. Therefore, the confidence of measurement was obtained. The distributions of ground surface potential are dependent on the resistivity and absorption percentage in concrete attached to structure.

  • PDF

The study on corrosion fatigue and cathodic protection of the steel plates used for the shipbuilding (조선용강재의 부식피로와 전기방식에 관한 연구)

  • 전대희;김원녕;이의호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.126-142
    • /
    • 1985
  • The plane bending corrosiion fatigue test for the welded metal parats was performed in the air and in the natural sea water with and without applying cathodic protection. The specimens tested were the weld of SM41 steel plates, SM58 steel plates and of SM41 to SM58, which were all prepared by submerged arc welding. The main results obtained from the experiment are summarized as follows: (1) In case with SM41 and SM58 steel plates, lower value of impact strength, higher value of hardness and more noble electrode potential were observed in the welded metal part than in the HAZ and base metal. Also the lowest hardness zone in the HAZ was observed with SM58 which was not found with SM41. In case with weld specimen of SM41 to SM58, the impact strength and the electrode potential of the welded metal part showed again the lowest and most noble value but the hardness value was located between those of SM41 and SM58 base metal. (2) In the fatigue test, the specimens tested in the air and under the cathodic protection were both cracked in a purely mechanical mode, but the specimens tested without cathodic protection were cracked by the combination of mechanical fracture and electro-chemical corrosion. (3) The corrosion fatigue limit of the welded metal parts of the specimen was increased by the cathodic protection. As the protection potential was varied down to -800 mV vs. SCE the fatigue limit was increased to the value tested in the air, and the maximum fatigue limit appeared at the -1, 000 - -1, 200 mV vs. SCE. However, as the protection potential was further decreased below -1, 200 mV vs.SCE, the fatigue limit of weld of SM58 and of SM41-SM58 joining was decreased but the limit was almost constant in the case of weld of SM41. (4) It is suggested that when designing steel ship the corrosion fatigue limit of welded metal parts should be stressed as a designing strength of the structure of steel ship in addition to the conventional basis considering simply tensile strength of steel and safety factor.

  • PDF

Relative Error Analysis for Measuring Value of Ground Resistance according to Position Variation of Potential Probe) (전위보조전극의 위치변화에 따른 접지저항 측정값의 상대오차분석)

  • Gil, Hyoung-Jun;Kim, Dong-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.96-102
    • /
    • 2009
  • In this paper, the effects of the position and the angle of the potential probes on the measurements of the ground resistance with the fall-of-potential method are described and the testing techniques to minimize the measuring errors are proposed. The fall-of-potential method is theoretically based on the potential and current measuring principle and the measuring error is primarily caused by the position and angle of auxiliary probes. In order to analyze the relative error for measuring value of ground resistance due to the position of the potential probe, ground resistance were measured in case that the distance of current probe was fixed at 50[m] and the distance of potential probe was located from l0[m] to 50[m]. Also, the potential probe was located at 30[$^{\circ}$], 45[$^{\circ}$], 60[$^{\circ}$], 90[$^{\circ}$] and 180[$^{\circ}$]. As a consequence, relative error decreased with increasing the distance of potential probe and decreasing the angle between current probe and potential probe. The results could be help to determine the position of potential probe when the ground resistance was measured at grounding system.

Design of Preform using equi-potential lines in Hot Forging (등전위면을 이용한 열간 단조에서의 예비형상 설계)

  • 이영규
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2000.04a
    • /
    • pp.71-74
    • /
    • 2000
  • The equi-potential lines designed in the electric field are introduced to find the preform shape in axisymmetric hot forging. The equi-potential lines generated between two conductors of different voltages show similar trends of the minimum work paths between the undeformed shape and the deformed shape. Base on this similarity the equi-potential lines obtained by arrangement of the initial and final shapes are utilized for the design of preform and then the artificial neural network is used to find the range of initial volume and potential value of the electric field.

  • PDF

Pinning potential of a perpendicular magnetic domain wall due to a point defect

  • Song, Kyungmi;Lee, Kyung-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.139-140
    • /
    • 2013
  • We investigate effect of a point defect on the pinning potential for a perpendicular magnetic domain wall based on the NEB method. We find that this method can give a reasonable value for the pinning potential and allows us to study the effect of various geometrical and magnetic properties on the pinning potential. In the presentation, we will discuss the effect of Ku and wire width on the pinning potential in detail.

  • PDF

Comparison of Sensitivity Between Balb/c 3T3 Cell and HaCaT Cell by NRU Assay to Predict Skin Phototoxicity Potential

  • Lee, Jong-Kwon;Lee, Eun-Hee;Lee, Sun-Hee
    • Toxicological Research
    • /
    • v.18 no.3
    • /
    • pp.227-232
    • /
    • 2002
  • In order to find out the appropriate in vitro method for high correlation with in vivo, we com-pared the sensitivities of phototoxicity (PT) in vitro method between in human keratinocytes, HaCaT cells and in 3T3 fibroblast cells derived from Balb/c mice. Both cells were exposed to six known phototoxic chemicals : promethazine, neutral red, chlortetracycline, amiodarone, bithionol, 8-methoxypsoralen, or non-phototoxic chemical, ALS (ammonium laureth sulfate) and then irradiated with 5 J/$cm^2$ of UVA. Cell viability ($IC_{50}$ ) was measured by neutral red uptake (NRU) assay. The ratio of $IC_{50}$ value of chemicals in the presence and absence of UVA was determined by the cut-off value. The phototoxic potential of test chemicals in NRU assay was determined by measuring the photoirriation factor (PIF) with a cut-off value of 5. In both 3T3 and HaCaT cells, all known phototoxic chemicals were positive (over 5 of PIF value), except that bithionol was found to be non-phototoxic to HaCaT cells, and ALS, non-phototoxic chemical was negative. These results suggest that Balb/c 3T3 cell was more sensitive than HaCaT cell to predict phototoxicity potential.