• Title/Summary/Keyword: Potential of Hydrogen

Search Result 915, Processing Time 0.081 seconds

AC Impedance Study of the Electrochemical Behavior of Hydrogen/Oxygen Gas Mixture at Nafion/Catalyst Electrode Interface

  • Song, S.M.;Lee, W.M.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.4
    • /
    • pp.179-188
    • /
    • 2000
  • The anodic reaction of hydrogen/oxygen gas mixture at platinum or palladium electrode interfacing with a solid polymer electrolyte was investigated using AC impedance method. The impedance spectrum of the electrode reactions of the mixture depends on the gas composition, electrode roughness, the mode of electrochemical operation and the cell potential. For electrolysis mode of operation, the spectrum taken for the reaction on a rough platinum electrode for the gas mixture revealed clearly that the local anodic reduction of oxygen gas takes place concurrently with the anodic oxidation of hydrogen gas.

  • PDF

Magnetic refrigerator for hydrogen liquefaction

  • Numazawa, T.;Kamiya, K.;Utaki, T.;Matsumoto, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

A Study on Prevention of Weld Transverse Crack for Thick Plate(I) (후판 용접부의 횡균열 발생 방지에 관한 연구(I))

  • Jeong, Ho-Sin;Eom, Dong-Seok;Lee, Hae-U
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.49-56
    • /
    • 1999
  • Welding is a reliable process and is mainly adopted for fabricating heavy structures. Recently, transverse cracks in the weld metal is serious problem, and they affect cost, efficiency, safety and joint reliability for various welded structures. In this view of point, this study investigated the potential factors for weld metal transverse crack. The main results obtained are as follows; 1) The content of diffusible hydrogen in the commercial flux cored are welding wire was remarkable change by manufacturer. 2) The diffusible hydrogen content was thd main factor for weld metal transverse cracks. 3) Weld metal was immune to transverse cracking under the condition of low diffusible hydrogen content of high restraint condition. 4) The factors for weld metal transverse crack would be the content of diffusible hydrogen and restraint of weld joint.

  • PDF

Electrochemical Properties of Laves Phase Zr-V System Hydrogen Absorbing Alloys (Zr-V계 Laves상 수소저장합금의 전기화학적 성질)

  • Park, Chan-kyo;Cho, Tae-hwan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.8 no.2
    • /
    • pp.51-56
    • /
    • 1997
  • The Zr-based Laves phase, $ZrV_2$ hydrogen storage alloy is not suited for the electrode of Ni-MH battery, because the binding strength of that with hydrogen is too strong although the storage capacity is high. For an application to electrode a part of V in alloys is substituted with Ni to make weaken the binding strength. The electrochemical and thermodynamic properties of Zr-V-Ni system alloys are investigated from the equilibrium potential and studied the possibility for the application to the rechargeable battery electrode.

  • PDF

Elucidating H/D-Exchange Mechanism of Active Hydrogen in Aniline and Benzene-1,2-dithiol

  • Ahmed, Arif;Islam, Syful;Kim, Sunghwan
    • Mass Spectrometry Letters
    • /
    • v.12 no.4
    • /
    • pp.146-151
    • /
    • 2021
  • In this study, the hydrogen/deuterium (HDX) exchange mechanism of active hydrogen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbon (PAH) dissolved in toluene and deuterated methanol by atmospheric pressure photoionization (APPI) is investigated. The comparison of the data obtained using APPI suggests that aniline and benzene-1,2-dithiol contain two exchanging hydrogens. The APPI HDX that best explains the experimental findings was investigated with the use of quantum mechanical calculations. The HDX mechanism is composed of a two-step reaction: in the first step, analyte radical ion gets deuterated, and in the second step, the hydrogen transfer occurs from deuterated analyte to de-deuterated methanol to complete the exchange reaction. The suggested mechanism provides fundamentals for the HDX technique that is important for structural identification with mass spectrometry. This paper is dedicated to Professor Seung Koo Shin for his outstanding contributions in chemistry and mass spectrometry.

Hydrogen Production Technology using High Temperature Electrolysis (고온 수전해에 의한 수소 제조 기술)

  • Hong, Hyun Seon;Choo, Soo-Tae;Yun, Yongseung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.14 no.4
    • /
    • pp.335-347
    • /
    • 2003
  • High temperature electrolysis (HTE) can become a key target technology for fulfilling the hydrogen requirement for the future hydrogen economy. This technology is based upon the partial replacement of electricity with heat energy for the electrolysis. Although the current research status of high temperature electrolysis in many countries remains at the small laboratory scale, the technology has great potential for producing hydrogen at a higher efficiency than low-temperature electrolysis (LTE). The efficiency of LTE is not expected to rise above 40%, whereas the efficiency of HTE has been reported to be above 50%. The higher efficiency of HTE would reduce costs by more than 30% compared to LTE. In this study, the technical data regarding the HTE of water and the resulting hydrogen production are reviewed, with an emphasis on the application of high temperature solid electrolyte and oxide electrodes for the HTE process.

Hydrogen Production by Gasification Technologies (가스화기술을 이용한 수소제조 기술)

  • 윤용승
    • Journal of Energy Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Gasification is the essential technology that can meet the interim hydrogen demand of large quantity before entering the hydrogen economy. Although the hydrogen production that is based upon the pure renewable energy like wind and solar power will eventually prevail, the interim mass production of hydrogen for the next ten to twenty years will come from the technologies that can demonstrate the economic feasibility in production cost with a high potential in minimizing CO$_2$ generation and in improving plant efficiency. Particularly, feedstock such as natural gas, coal, petroleum residual oil, wastes, and biomass appears to be utilized in Korea as hydrogen source, at least during the short and medium period of time, owing to the advantage in production cost. Because one of the main reasons behind the recent hydrogen issue is the reduction requirement of CO$_2$ that would be controlled according to the climate change protocol, hydrogen production technologies must be developed to yield the minimal CO$_2$ generation.

The Reduction of Waterworks Sludge by Hydrogen Peroxide Treatment (과산화수소 산화처리에 의한 정수슬러지의 감량화)

  • Kwon, Jae-Hyun;Kim, Young-Do;Park, Ki-Young;Lee, Seock-Heon;Kim, II-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.1
    • /
    • pp.123-130
    • /
    • 2007
  • The effects of hydrogen peroxide treatment on the reduction of waterworks sludge were investigated in this study. Sludge treated by peroxidation $H_2O_2$ oxidation) was dewatered using a pressure filter at 3atm. It was observed that $H_2O_2$ treatment at the acidic condition significantly reduce both cake water content and specific resistance to filtration (SRF), indicating the enhancement of dewaterability and filterability. The filterability by hydrogen peroxide treatment at pH 3.5 was better than acidic treatment and became comparable with polymer conditioning. The sludge filterability evaluated by SRF was optimal at a dose 2ml $H_2O_2$/sludge($0.02g\;H_2O_2/gTS$) after adjusting of pH to 3.5. The $H_2O_2$ oxidation at pH 3.5 also produced even more dewatered cake when compared with polymer conditioning. The reduction rate of sludge mass at an optimal condition showed 34% compared with untreated sludge. The effects of peroxidation on sludge properties including zeta potential, bound water and particle size were also evaluated. Peroxidation at the acidic condition reduced both bound water and zeta potential. By $H_2O_2$ combined with sulfuric acid leached iron caused Fenton's reaction, which showed a potential to significantly reduce the amount of solids mass and to produce more compact cake with higher filterability.

SUPPRESSION OF HYDROGEN CONSUMING BACTERIA IN ANAEROBIC HYDROGEN FERMENTATION

  • Park, Woo-Shin;Jang, Nam-J.;Hyun, Seung-H.;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.181-190
    • /
    • 2005
  • Severe loss or hydrogen occurred in most anaerobic hydrogen fermentation reactors. Several selected methods were applied to suppress the consumption of hydrogen and increase the potential of production. As the first trial, pH shock was applied. The pH of reactor was dropped nearly to 3.0 by stopping alkalinity supply and on]y feeding glucose (5 g/L-d). As the pH was increase to $4.8{\pm}0.2,$ the degradation pathway was derived to solventogenesis resulting in disappearance of hydrogen in the headspace. In the aspect of bacterial community, methanogens weren't detected after 22 and 35 day, respectively. Even though, however, there was no methanogenic bacterium detected with fluorescence in-situ hybridization (FISH) method, hydrogen loss still occurred in the reactor showing a continuous increase of acetate when the pH was increased to $5.5{\pm}0.2$. This result was suggesting the possibility of the survival of spore fanning acetogenic bacteria enduring the severely acidic pH. As an alternative and additive method, nitrate was added in a batch experiment. It resulted in the increase of maximum hydrogen fraction from 29 (blank) to 61 % $(500\;mg\;NO_3/L)$. However, unfortunately, the loss of hydrogen occurred right after the depletion of nitrate by denitrification. In order to prevent the loss entangled with acetate formation, $CO_2$ scavenging in the headspace was applied to the hydrogen fermentation with heat-treated sludge since it was the primer of acetogenesis. As the $CO_2$ scavenging was applied, the maximum fraction of hydrogen was enhanced from 68 % to 87 %. And the loss of hydrogen could be protected effectively.

Electrochemical Behavior of Dissolved Hydrogen and Hydrogen Peroxide in Boric Acid Solution at the Elevated Temperature (붕산수용액 매질에서 용존수소와 과산화수소의 고온 전기화학 거동연구)

  • Yeon Jei-Won;Woo Seung-Kyun;Choi Young-Ku;Jung Yongju;Kim Won-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.1
    • /
    • pp.21-25
    • /
    • 2004
  • The electrochemical behaviors of dissolved hydrogen and hydrogen peroxide at a platinum disk electrode were investigated in boric acid solution by potentiostatic polarization method at the temperature of 25 and $200^{\circ}C$. The oxidation of dissolved hydrogen at $25^{\circ}C$ was kinetically controlled reaction, the rate of which depends upon the electron transfer on the electrode surface. As temperature was raised, however, the electrochemical characteristics of dissolved hydrogen were changed from a kinetically controlled reaction to a diffusion controlled one. One notable feature, with dissolved hydrogen at high temperature, is that an abnormal potential range was observed, where the oxidation rate of dissolved hydrogen rapidly decreased just before starting potential of water oxidation. We think it is caused by the deactivation of the electrode that results from the adsorption of hydroxyl ion on the surface of the platinum disk. On the contrary, a definite change with temperature was not identified in the case of the hydrogen peroxide except for the increase in current density that was due to the increasing diffusion coefcient with an increase of temperature.