• Title/Summary/Keyword: Potential flow analysis

Search Result 783, Processing Time 0.023 seconds

Nonlinear Potential Flow Analysis for the Hull with a Transom Stern (트랜섬 선미를 가지는 선형의 비선형 포텐셜 유동해석)

  • Choi, Hee-Jong;Lee, Gyoung-Woo;Shin, Sung-Chul;Youn, Sun-Dong;Yang, Jun-Mo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • In this paper, the flow phenomena and free surface wave pattern around the hull with a transom stern advancing on the free surface in steady state had been studied and the numerical analysis program had been developed using Rankine source panel method based on potential flow analysis in which the non-linearities of the free surface boundary conditions had been fully satisfied. To verify the validity of the developed program the numerical calculations for Athena hull and KCS(KRISO container ship) hull had been performed and the results of the numerical computation had been compared with the ones of the model test experiment.

  • PDF

Analysis of Marine Traffic Feature for Safety Assessment at Southern Entrance of the Istanbul Strait-I

  • Aydogdu, Volkan;Park, Jin-Soo;Keceli, Yavuz;Park, Young-Soo
    • Journal of Navigation and Port Research
    • /
    • v.32 no.7
    • /
    • pp.521-527
    • /
    • 2008
  • The Istanbul Strait is one of the important waterways in the world. And its southern entrance has a highly congested local traffic. Till now there are several studies regarding how the Istanbul Strait is dangerous to navigate and how those dangers can be mitigated. But there is no study regarding local traffic which is posing great collision risk. In a certain traffic area, marine traffic safety assessment parameters are traffic volume, frequency of collision avoidance maneuver, traffic density, traffic flow and potential encounter, In this paper local traffic volume, traffic flow and potential encounter number of local traffic vessels and possibility of collision are investigated in order to find degree of danger at the southern entrance of the Istanbul Strait. Finally by utilizing those, risky areas are determined for southern entrance of the Istanbul Strait. Results have been compared to a previous study regarding risk analysis at congested areas of the Istanbul Strait (Aydogdu, 2006) and consistency of the results were presented.

Development and Validation of an Scale to Measure Flow in Massive Multiplayer Online Role Playing Game (교육용 MMORPG에서의 학습자 몰입 측정척도 개발 및 타당화)

  • Chung, Mi-Kyung;Lee, Myung-Geun;Kim, Sung-Wan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.59-68
    • /
    • 2009
  • This paper aims to explore the factors of learner's flow and to develop and validate a scale to measure the flow in Massive Multiplayer Online Role Playing Game(MMORPG) for education. First of all, potential factors were drawn through literature review. The potential stage comprises 6 factors(learner's psychological characteristics, learner's skill, importance of game, environment for learner, instructional design, and instructional environment) and 16 subfactors. With total 48 items developed. a survey was carried out among 293 elementary learners who had been participating in a commercial MMORPG for English skills to measure their flow in the MMORPG by utilizing the potential scale. Using the responses collected from 288 respondents, exploratory factor analysis, reliability analysis, and confirmatory factor analysis were performed. The expository factor analysis showed that items within each sub-factors could be bound into one factor. That is, the variables evaluating learner's flow were divided into six factors(learner's psychological characteristics, learner's skill, importance of game, environment for learner, instructional design, and instructional environment). And these factors were interpreted consisting of 16 sub-ones. Reliability estimates indicated that the evaluation tool had good internal consistency. The confirmatory factor analysis did confirm the model suggested by the expository factor analysis. Over fit measures(CFI, NFI, NNFI) showed the good suitability of the model. Findings of this study confirmed the validity and reliability of the scale to measure learner's flow in MMORPG.

Comparative Study on Numerical Analysis Methods on the 2D Ground Effect (2차원 지면효과에 대한 수치해석 기법 비교 연구)

  • Kim, Yoon-Sik;Shin, Myung-Soo;Cho, Yong-Jin
    • Journal of Ocean Engineering and Technology
    • /
    • v.21 no.3 s.76
    • /
    • pp.16-25
    • /
    • 2007
  • A comparative study on the turbulent flaw simulation and the potential flaw analysis has been performed. A law Mach number preconditioned Navier-Stokes solver, using the multi-block grid method and a panel method based on the velocity potential, have been developed and validated by comparison to the experimental data. The present numerical analysis methods are applied to the ground effect problem around the NACA 4412 airfoil. It has been confirmed that the potential flaw analysis on the ground effect, using the image method, is consistent, to some degree, with the viscous calculations for high Reynolds number flows.

2-D Inviscid Analysis of Flow in One Stage of Axial Compressor (1단 축류압축기 내부 유동의 2차원 비점성 해석)

  • Kim HyunIl;Park JunYoung;Baek JeHyun;Jung HeeTaek
    • Journal of computational fluids engineering
    • /
    • v.5 no.2
    • /
    • pp.38-46
    • /
    • 2000
  • It has been indicated that the rotor/stator interaction has distinct causes of unsteadiness, such as the viscous vortex shedding, wake/stator interaction and potential rotor/stator interaction. In this paper, the mechanism of unsteady potential interaction in one stage axial compressor is numerically investigated for blade row ratio 1:1 and 2:3 at design point and for blade row ratio 2:3 at off-design point in two-dimensional view point. The numerical technique used is the upwind scheme of Van-Leer's Flux Vector Splitting(FVS) and Cubic spline interpolation is applied on zonal interface. In this study the flow unsteadiness due to potential interaction are found to be larger in blade row ratio 2:3 than in 1:1. The total pressure rise in blade row ratio 2:3 is closer to the real value in design point than that in 1:1. The change of unsteady pressure amplitude according to the variation of stator exit pressure is very small.

  • PDF

Numerical Analysis of Supercavitating Flows Based on Viscous/Inviscid Method (점성 및 비점성 해석법을 이용한 초월공동 유동 수치해석)

  • Ahn, Byoung-Kwon;Kim, Ji-Hye;Choi, Jung-Kyu;Kim, Hyoung-Tae;Nah, Young-In;Lee, Do-Hyung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.1
    • /
    • pp.25-32
    • /
    • 2014
  • Recently supercavitating torpedo has been studied because of its high-speed performance as the next generation of underwater weapon systems. In this study, we present a numerical method based on the potential flow. Characteristic features of the shape of supercavities and drag forces are investigated. In addition, we introduce a viscous-potential method to compensate for the effects of viscosity. The results are compared with viscous calculations using a commercial package, FLUENT V13.

Design and Dynamic Analysis of Fish-like Robot;PoTuna

  • Kim, Eun-Jung;Youm, Young-Il
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1580-1586
    • /
    • 2003
  • This paper presents the design and the analysis of a "fish-like underwater robot". In order to develop swimming robot like a real fish, extensive hydrodynamic analysis were made followed by the study of biology of the fishes especially its maneuverability and propel styles. Swimming mode is achieved by mimicking fish-swimming of carangiform. This is the swimming mode of the fast motion using its tail and peduncle for propulsion. In order to generate configurations of vortices that gives efficient propulsion yawing and surging with a caudal fin has applied and in order to submerge and maintain the body balance pitching and heaving motion with a pair of pectoral fin is used. We have derived the equation of motion of PoTuna by two methods. In first method, we use the equation of motion of underwater vehicle with the potential flow theory for the power of propulsion. In second method, we apply the method of the equation of motion of UVM(Underwater Vehicle-Manipulator). Then, we compare these results.

  • PDF

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.

Flow Analysis with a Port/Valve Assembly and Cylinder Using a RNG k-$\varepsilon$ Model (RNG k-$\varepsilon$모델을 이용한 포트/밸브계 및 실린더내의 유동해석)

  • 양희천
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.4
    • /
    • pp.436-444
    • /
    • 1998
  • Applicability of the RNG k-$\varepsilon$ model to the analysis of unsteady axisymmetric turbulent flow of a reciprocating engine including port/valve assembly is studied numerically. The governing equations based on non-orthogonal including port/valve assembly is studied numerically. The governing equations based on a non-orthogonal coordinate formulation with Cartesian velocity components are used and discretised by the finite volume method with non-staggered variable arrangements. The predicted results using the RNG k-$\varepsilon$ model of the unsteady axisymmetric turbulent flow within a cylinder of reciprocating model engine including port/valve assembly are compared to these from the modified k-$\varepsilon$ model and experimental data. Using the RNG k-$\varepsilon$ model seems the have some potential for the simulations of the unsteady turbulent flow within a port/valve-cylinder assembly over the modified k-$\varepsilon$model.

  • PDF

Liner Analysis of IMV Proportional Flow Control Valve Static Characteristics (IMV 비례 유량제어밸브 정특성 선형해석)

  • Jung, Gyuhong
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.56-64
    • /
    • 2019
  • Recently, as the environmental regulation for earth moving equipment has been tightened, advanced systems using electronic control have been introduced for energy savings. An IMV(Independent Metering Valve), which consists of four 2-way valves, is one of the electro-hydraulic control systems that provides more flexible controllability and potential for energy savings in excavators, when compared to the conventional 4-way spool valve system. To fully realize an IMV, a two-stage bi-directional flow control valve which can regulate the large amount of flow in both directions, should be developed in advance. A simple design that allows proportional flow control to apply the pilot pressure from the current-controlled solenoid to the spring loaded flow control spool and thus valve displacement, is proportional to the solenoid current. However, this open-loop type valve is vulnerable to flow force which directly affects the valve displacement. Force feedback servo of which the position loop is closed by the feedback spring which interconnects the solenoid valve and flow control spool, could compensate for the flow force. In this study, linearity for the solenoid current input and robustness against load pressure disturbance is investigated by linear analysis of the static nonlinear equations for the IMV proportional flow control valve with feedback spring. Gains of the linear system confirm the performance improvement with the feedback spring design.