• Title/Summary/Keyword: Potential failure surface

Search Result 94, Processing Time 0.025 seconds

Analysis of Slope Stability in Slopes of Failed and not Excavated (붕괴된 사면과 굴착되지 않은 사면의 안정성 검토)

  • 유병옥;김경석;이용희
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.129-144
    • /
    • 2003
  • Generally, investigation methods of cut slope are conducted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Assumption of Failure Surface using Borehole Image Processing System in Failed Rock Slope (Borehole Image Processing System에 의한 붕괴사면의 활동면 추정)

  • Yoo Byung-Ok;Chung Hyung-Sik
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.217-239
    • /
    • 1999
  • Investigation methods of cut slope are conducted generally only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitation of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of 4 boleholes and BIPS (Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed highway slope. As the results of BIPS, we could decide potential sliding surface in the slope and conducted to check slope stability. And decided slope stability measures.

  • PDF

Characteristics of EMR emitted by coal and rock with prefabricated cracks under uniaxial compression

  • Song, Dazhao;You, Qiuju;Wang, Enyuan;Song, Xiaoyan;Li, Zhonghui;Qiu, Liming;Wang, Sida
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.49-60
    • /
    • 2019
  • Crack instability propagation during coal and rock mass failure is the main reason for electromagnetic radiation (EMR) generation. However, original cracks on coal and rock mass are hard to study, making it complex to reveal EMR laws and mechanisms. In this paper, we prefabricated cracks of different inclinations in coal and rock samples as the analogues of the native cracks, carried out uniaxial compression experiments using these coal and rock samples, explored, the effects of the prefabricated cracks on EMR laws, and verified these laws by measuring the surface potential signals. The results show that prefabricated cracks are the main factor leading to the failure of coal and rock samples. When the inclination between the prefabricated crack and axial stress is smaller, the wing cracks occur first from the two tips of the prefabricated crack and expand to shear cracks or coplanar secondary cracks whose advance directions are coplanar or nearly coplanar with the prefabricated crack's direction. The sample failure is mainly due to the composited tensile and shear destructions of the wing cracks. When the inclination becomes bigger, the wing cracks appear at the early stage, extend to the direction of the maximum principal stress, and eventually run through both ends of the sample, resulting in the sample's tensile failure. The effect of prefabricated cracks of different inclinations on electromagnetic (EM) signals is different. For samples with prefabricated cracks of smaller inclination, EMR is mainly generated due to the variable motion of free charges generated due to crushing, friction, and slippage between the crack walls. For samples with larger inclination, EMR is generated due to friction and slippage in between the crack walls as well as the charge separation caused by tensile extension at the cracks' tips before sample failure. These conclusions are further verified by the surface potential distribution during the loading process.

Roof failure of shallow tunnel based on simplified stochastic medium theory

  • Huang, Xiaolin;Zhou, Zhigang;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.14 no.6
    • /
    • pp.571-580
    • /
    • 2018
  • The failure mechanism of tunnel roof is investigated with upper bound theorem of limit analysis. The stochastic settlement and nonlinear failure criterion are considered in the present analysis. For the collapse of tunnel roof, the surface settlement is estimated by the simplified stochastic medium theory. The failure curve expressions of collapse blocks in homogeneous and in layered soils are derived, and the effects of material parameters on the potential range of failure mechanisms are discussed. The results show that the material parameters of initial cohesion, nonlinear coefficient and unit weight have significant influences on the potential range of collapse block in homogeneous media. The proportion of collapse block increases as the initial cohesion increases, while decreases as the nonlinear coefficient and the unit weight increase. The ground surface settlement increases with the tunnel radius increasing, while the possible collapse proportion decreases with increase of the tunnel radius. In layered stratum, the study is investigated to analyze the effects of material parameters of different layered media on the proportion of possible collapse block.

Static and quasi-static slope stability analyses using the limit equilibrium method for mountainous area

  • Hosung Shin
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.187-195
    • /
    • 2023
  • Intensive rainfall during the summer season in Korea has triggered numerous devastating landslides outside of downtown in mountainous areas. The 2D slope stability analysis that is generally used for cut slopes and embankments is inadequate to model slope failure in mountainous areas. This paper presents a new 3D slope stability formulation using the global sliding vector in the limit equilibrium method, and it uses an ellipsoidal slip surface for static and quasi-static analyses. The slip surface's flexibility of the ellipsoid shape gives a lower FS than the spherical failure shape in the Fellenius, Bishop, and Janbu's simplified methods. The increasing sub-columns of each column tend to increase the FS and converge to a steady value. The symmetrical geometric conditions of the convex turning corners do not indicate symmetrical failure of the surface in 3D analysis. Pseudo-static analysis shows that the horizontal seismic force decreases the FS and increases the mass volume at the critical failure state. The stability index takes the FS and corresponding sliding mass into consideration to assess the potential risk of slope failure in complex mountainous terrain. It is a valuable parameter for selecting a vulnerable area and evaluating the overall risk of slope failure.

Borehole Image Processing System(BIPS)를 이용한 사면 안정성 해석

  • Yu, Byeong-Ok;Kim, Byeong-Seop
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.2
    • /
    • pp.111-129
    • /
    • 2002
  • Generally, investigation methods of cut slope are conucted only geological surface survey to gain engineering geological data of cut slopes. These methods have many problems such as limitations of investigation for a special area. So geophysical investigations such as geotomography, seismic and electrical resistivity methods have been used to search for failure surface in potential failure slopes or failed slopes. But investigation method using the borehole camera is recently a used method and it is thought that this method is more reliable method than other investigation methods because of being able to see by the eyes. Therefore, this paper was conducted investigations of borings and BIPS(Borehole Image Processing System) to search for potential sliding surfaces and was applied to obtain information of discontinuity on failed and potential failure slope in highway. As the results of BIPS, we could decide potential sliding surface in the slope, conducted to check slope stability and decided slope stability measures.

  • PDF

Probabilistic Analyrgis of Slope Stactility for Progressive Failure (진행성 파괴에 대한 사면안정의 확률론적 해석)

  • 김영수
    • Geotechnical Engineering
    • /
    • v.4 no.2
    • /
    • pp.5-14
    • /
    • 1988
  • A probabilistic model for the progressive failure in a homogeneous soil slope consisting of strain-softening material is presented. The local safety margin of any slice above failure surface is assumed to follow a normal distribution. Uncertainties of the shear strength along potential failure surface are expressed by one-dimensional random field models. In this paper, only the case where failure initiates at toe and propagates up to the crest is considerd. The joint distribution of the safety margin of any two adjacent slices above the failure surface is assumed to be bivariate normal. The overall probability of the sliding failure is expressed as a product of probabilities of a series of conditional el.eats. Finally, the developed procedure has been applied in a case study to yield the reliability of a cut slope.

  • PDF

Probabilistic Analysis of the Stability of Soil Slopes (사면안정의 확률론적 해석)

  • Kim, Young Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.8 no.3
    • /
    • pp.85-90
    • /
    • 1988
  • A probabilistic model for the failure in a homogeneous soil slope is presented. The Safety of the slope is measured through its probability of failure rather than the customary factor of safety. The safety margin of slope failure is assumed to follow a normal distribution. Sources of uncertainties affecting characterization of soil property in a homogeneous soil layer include inherent spatial variability., estimation error from insufficient samples, and measurement errors. Uncertainties of the shear strength-along potential failure surface are expressed by one-dimensional random field models. The rupture surface, created at toe of a soil slope, has been considered to propagate towards the boundary along a path following an exponential (log-spiral) law. Having derived the statistical characteristics of the rupture surface and of the forces which act along it, the probability of failure of the slope was found. Finally the developed procedure has been applied in a case study to yield the reliability of a soil slope.

  • PDF

An Investigation of AAR Distress in the Plain Concrete Pavement (알칼리-골재 반응에 의한 무근콘크리트 포장의 파손 고찰)

  • 홍승호;한승환;안성순;장태순
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.98-101
    • /
    • 2003
  • The Alkali-Aggregate Reaction (AAR) may cause a serious failure in the concrete structures. Several researchers in some nations have performed the continuous studies to prevent failure of a concrete structures by the AAR distress as well as the studies to manifest the mechanism. The ASTM Standards to prevent failure by potential AAR aggregates were established in 1950. The KS F2545 and KS F 2546 were established to test the susceptibility of aggregate to potential AAR in 1982. But the researches on the AAR have not been performed affluently in Korea because the distress due to AAR has seldom been reported officially. In this study, the Chemical Method and Scanning Electron Microscopy (SEM) were used to verifying the cause of the pattern crack on the surface and internal crack in the plain concrete pavement. It can be concluded that the distress of a specific site in plain concrete pavement was mainly due to AAR, and the chemical method and SEM may be the effective tools for verifying the cause of AAR distresses.

  • PDF

Evaluation of Surface and Sub-surface defects in Railway Wheel Using Induced Current Focused Potential Drops (집중유도 교류 전위차법을 이용한 철도차량 차륜의 표면과 내부 결함 평가)

  • Lee, Dong-Hyung;Kwon, Seok-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.1 s.38
    • /
    • pp.1-6
    • /
    • 2007
  • Railway wheels in service are regularly checked by ultrasonic testing, acoustic emission and eddy current testing method and so on. However, ultrasonic testing is sometimes inadequate for sensitively detecting the cracks in railway wheel which is mainly because of the fact of crack closure. Recently, many researchers have actively fried to improve precision for defect detection of railway wheel. The development of a nondestructive measurement tool for wheel defects and its use for the maintenance of railway wheels would be useful to prevent wheel failure. The induced current focusing potential drop(ICFPD) technique is a new non-destructive tasting technique that can detect defects in railway wheels by applying on electro-magnetic field and potential drops variation. In the present paper, the ICFPD technique is applied to the detection of surface and internal defects for railway wheels. To defect the defects for railway wheels, the sensor for ICFPD is optimized and the tests are carried out with respect to 4 surface defects and 6 internal defects each other. The results show that the surface crack depth of 0.5 mm and internal crack depth of 0.7 mm in wheel tread could be detected by using this method. The ICFPB method is useful to detect the defect that initiated in the tread of railway wheels