• Title/Summary/Keyword: Potential biomarkers

Search Result 381, Processing Time 0.026 seconds

Clinical Application of Plasma Neurofilament Light Chain in a Memory Clinic: A Pilot Study

  • YongSoo Shim
    • Dementia and Neurocognitive Disorders
    • /
    • v.21 no.2
    • /
    • pp.59-70
    • /
    • 2022
  • Background and Purpose: Neurofilament light chain (NfL) has been considered as a biomarker for neurodegenerative diseases including Alzheimer's disease (AD). We measured plasma NfL levels in older adults with cognitive complaints and evaluated their clinical usefulness in AD. Methods: Plasma levels of NfL, measured by using the single molecule array method, were acquired in a total of 113 subjects consisting of subjective cognitive decline (SCD; n=14), mild cognitive impairment (MCI; n=37), or dementia of Alzheimer type (DAT; n=62). Plasma NfL level was compared among three groups, and its association with cognitive and functional status was also analyzed. Results: After adjusting for age, plasma NfL level was higher in subjects with DAT (65.98±84.96 pg/mL), compared to in subjects with SCD (16.90±2.54 pg/mL) or MCI (25.53±10.42 pg/mL, p=0.004). NfL levels were correlated with scores of the mini-mental state examination (r=-0.242, p=0.021), clinical dementia rating (CDR) (r=0.291, p=0.005), or CDR-sum of boxes (r=0.276, p=0.008). Just for participants who performed amyloid positron emission tomography (PET), the levels were different between subjects with PET (-) (n=17, 25.95±13.25 pg/mL) and PET (+) (n=16, 63.65±81.90 pg/mL, p=0.010). Additionally, plasma NfL levels were different between vascular dementia and vascular MCI, and between Parkinson's disease- dementia and no dementia. Conclusions: This pilot study shows that in subjects with DAT, plasma NfL levels increase. Plasma NfL level correlated with cognitive and functional status. Further longitudinal studies may help to apply the plasma NfL levels to AD, as a potential biomarker for the diagnosis and predicting progression.

IL-6-6331 (T/C, rs10499563) is Associated with Decreased Risk of Gastric Cancer in Northern Chinese

  • Yang, Li;Sun, Ming-Jun;Liu, Jing-Wei;Xu, Qian;Yuan, Yuan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7467-7472
    • /
    • 2013
  • Background: Polymorphisms of genes encoding cytokines could be potential biomarkers to predict risk of gastric cancer (GC). Here, we investigated the association between the IL-6 -6331 (T/C, rs10499563) polymorphism in its promoter region and GC risk. Methods: In this case-control study of 215 GC cases and 518 non-cancer controls, the IL-6 -6331 (T/C, rs10499563) polymorphism was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Results: Individuals with the TC or CC genotype were associated with a significantly decreased risk of GC (OR=0.710, 95%CI: 0.504-0.999, P=0.049) compared with TT wild-type carriers. Ther C allele was also associated with significantly decreased risk of GC (OR=0.715, 95%CI: 0.536-0.954, P=0.023) compared with the T allele. In the stratification analysis, TC or CC genotypes were associated with significantly decreased GC risk in subgroups of males, people older than 60, and H. pylori-positive cases. However, no significant interaction was observed for TC or CC genotypes with H. pylori infection. On stratification with the Lauren classification, TC or CC genotypes were associated with significantly decreased risk of diffuse-type GC (OR=0.497, 95%CI: 0.266-0.925, P=0.027), also in subgroups of males, people older than 60, and H. pylori-positive cases. Conclusions: The IL-6 -6331 (T/C, rs10499563) polymorphism is associated with genetic susceptibility of GC and may have the potential to predict GC risk.

DNA Methylation changes in Human Cancers (인체 암의 DNA 메틸화 변화)

  • Kwon, Hyeong-Ju;Kang, Gyeong-Hoon
    • Journal of Genetic Medicine
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • Epigenetic changes represented by promoter CpG island hypermethylation and histone modification are an important carcinogenetic mechanism, which is found in virtually all histologic types of human cancer. About 60-70% of human genes harbor CpG islands in their promoters and 5' exonal sequences, and some of them undergo aberrant promoter CpG island hypermethylation and subsequent downregulation of gene expression. The loss of expression in tumor suppressor or tumor-related genes results in acceleration of tumorigenic processes. In addition to regional CpG island hypermethylation, diffuse genomic hypomethylation represents an important aspect of DNA methylation changes occurring in human cancer cells and contributes to chromosomal instability. These apparently contrasting methylation changes occur not only in human cancer cells, but also in premalignant cells. CpG island hypermethylation has gained attention for not only the tumorigenic mechanistic process, but also its potential utilization as a tumor biomarker. DNA methylation markers are actively investigated for their potential uses as tumor biomarkers for diagnosis of tumors in body fluids, prognostication of cancer patients, or prediction of chemotherapeutic drug response. In this review, these aspects will be discussed in detail.

  • PDF

Proteome in Toxicological Assessment of Endocrine Disrupting Chemicals (프로테오믹스를 이용한 내분비계 교란물질 환경독성 연구)

  • 김호승;계명찬
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.2
    • /
    • pp.87-100
    • /
    • 2003
  • It is important to understand the potential human health implications of exposure to environmental chemicals that may act as hormonally active agents. It is necessary to have an understanding of how pharmaceutical and personal care products and other chemicals affect the ecosystem of our planet as well as human health. Endocrine disruption is defined as the ability of a chemical contaminating the workplace or the environment to interfere with homeostasis, development, reproduction, and/or behavior in a living organism or it's offspring. Certain classes of environmentally persistent chemicals such as polychlorinated biphenyls (PCBs), dioxins, furans, and some pesticides can adversely effect the endocrine systems of aquatic life and terrestrial wildlife. Research continues to support the theory of endocrine disruption. However, endocrine disruption researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of tonicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis (2D/E) and MALDI-TOF mass spectrometry (MS) sr protein chip array and SELDI-TOF MS. Proteomics have an opportunity to play an important role in resolving the question of what role endocrine disruptors play in initiating human disease. Proteomics can also play an imfortant role in the evaluation of the risk assessment and use of risk management and risk communication tools required to address public health concerns related to notions of endocrine disruptors. Understanding the need for the proteomics and possessing knowledge of the developing biomakers used to abbess endocrine activity potential will he essential components relevant to the topic of endocrine disruptors.

Identification of Specific Gene Modules in Mouse Lung Tissue Exposed to Cigarette Smoke

  • Xing, Yong-Hua;Zhang, Jun-Ling;Lu, Lu;Li, De-Guan;Wang, Yue-Ying;Huang, Song;Li, Cheng-Cheng;Zhang, Zhu-Bo;Li, Jian-Guo;Xu, Guo-Shun;Meng, Ai-Min
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.10
    • /
    • pp.4251-4256
    • /
    • 2015
  • Background: Exposure to cigarette may affect human health and increase risk of a wide range of diseases including pulmonary diseases, such as chronic obstructive pulmonary disease (COPD), asthma, lung fibrosis and lung cancer. However, the molecular mechanisms of pathogenesis induced by cigarettes still remain obscure even with extensive studies. With systemic view, we attempted to identify the specific gene modules that might relate to injury caused by cigarette smoke and identify hub genes for potential therapeutic targets or biomarkers from specific gene modules. Materials and Methods: The dataset GSE18344 was downloaded from the Gene Expression Omnibus (GEO) and divided into mouse cigarette smoke exposure and control groups. Subsequently, weighted gene co-expression network analysis (WGCNA) was used to construct a gene co-expression network for each group and detected specific gene modules of cigarette smoke exposure by comparison. Results: A total of ten specific gene modules were identified only in the cigarette smoke exposure group but not in the control group. Seven hub genes were identified as well, including Fip1l1, Anp32a, Acsl4, Evl, Sdc1, Arap3 and Cd52. Conclusions: Specific gene modules may provide better understanding of molecular mechanisms, and hub genes are potential candidates of therapeutic targets that may possible improve development of novel treatment approaches.

Regulation of Quinone Reductase Activity in Mice by Dehydroglyasperin C Isolated from Licorice (감초에서 분리된 데하드로글라이아스페린 C에 의한 마우스 모델계에서 quinone reductase 활성의 조절)

  • Han, Jung-Hwa;Kim, Jong-Sang
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.1
    • /
    • pp.51-55
    • /
    • 2013
  • Licorice, Glycyrrhizae radix, is one of the oldest and most frequently used botanicals in the oriental medicine. Our previous study showed that dehydrolyasperin C (DGC) isolated from licorice had antioxidant activity and induced phase 2 detoxifying enzymes in mouse hepatoma cells. Therefore, this study was conducted to investigate the effect of exposure time to DGC on quinone reductase (QR), one of the anticarcinogenic biomarkers, and antioxidant potential of plasma using animal model. ICR mice were divided into 7 groups, in which mice in each group were injected with DGC (5 mg/kg b.w.) for 0, 2, 4, 6, 8, 12, 24 hours respectively. Following the treatment the organs including liver, kidney, lung, stomach, large intestine, small and large intestines were collected and subjected to QR activity assay, western blotting, and FRAP assay. Exposure to DGC caused a significant induction of QR activity in stomach and large intestine of mice. Ferric reducing activity of plasma, a typical biomarker for antioxidative potentialshowed that DGC improved antioxidant potential in mice. However, no significant effect of DGC was observed in the other organs.

  • PDF

MicroRNA-23a: A Novel Serum Based Diagnostic Biomarker for Lung Adenocarcinoma

  • Lee, Yu-Mi;Cho, Hyun-Jung;Lee, Soo-Young;Yun, Seong-Cheol;Kim, Ji-Hye;Lee, Shin-Yup;Kwon, Sun-Jung;Choi, Eu-Gene;Na, Moon-Jun;Kang, Jae-Ku;Son, Ji-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.71 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Background: MicroRNAs (miRNAs) have demonstrated their potential as biomarkers for lung cancer diagnosis. In recent years, miRNAs have been found in body fluids such as serum, plasma, urine and saliva. Circulating miRNAs are highly stable and resistant to RNase activity along with, extreme pH and temperatures in serum and plasma. In this study, we investigated serum miRNA profiles that can be used as a diagnostic biomarker of non-small cell lung cancer (NSCLC). Methods: We compared the expression profile of miRNAs in the plasma of patients diagnosed with lung cancer using an miRNA microarray. The data from this assay were validated by quantitative real-time PCR (qRT-PCR). Results: Six miRNAs were overexpressed and three miRNAs were underexpressed in both tissue and serum from squamous cell carcinoma (SCC) patients. Sixteen miRNAs were overexpressed and twenty two miRNAs were underexpressed in both tissue and serum from adenocarcinoma (AC) patients. Of the four miRNAs chosen for qRT-PCR analysis, the expression of miR-23a was consistent with microarray results from AC patients. Receiver operating characteristic (ROC) curve analyses were done and revealed that the level of serum miR-23a was a potential marker for discriminating AC patients from chronic obstructive pulmonary disease (COPD) patients. Conclusion: Although a small number of patients were examined, the results from our study suggest that serum miR-23a can be used in the diagnosis of AC.

Assessment of the Therapeutic Potential of Persimmon Leaf Extract on Prediabetic Subjects

  • Khan, Mohd M.;Tran, Bao Quoc;Jang, Yoon-Jin;Park, Soo-Hyun;Fondrie, William E.;Chowdhury, Khadiza;Yoon, Sung Hwan;Goodlett, David R.;Chae, Soo-Wan;Chae, Han-Jung;Seo, Seung-Young;Goo, Young Ah
    • Molecules and Cells
    • /
    • v.40 no.7
    • /
    • pp.466-475
    • /
    • 2017
  • Dietary supplements have exhibited myriads of positive health effects on human health conditions and with the advent of new technological advances, including in the fields of proteomics, genomics, and metabolomics, biological and pharmacological activities of dietary supplements are being evaluated for their ameliorative effects in human ailments. Recent interests in understanding and discovering the molecular targets of phytochemical-gene-protein-metabolite dynamics resulted in discovery of a few protein signature candidates that could potentially be used to assess the effects of dietary supplements on human health. Persimmon (Diospyros kaki) is a folk medicine, commonly used as dietary supplement in China, Japan, and South Korea, owing to its different beneficial health effects including anti-diabetic implications. However, neither mechanism of action nor molecular biomarkers have been discovered that could either validate or be used to evaluate effects of persimmon on human health. In present study, Mass Spectrometry (MS)-based proteomic studies were accomplished to discover proteomic molecular signatures that could be used to understand therapeutic potentials of persimmon leaf extract (PLE) in diabetes amelioration. Saliva, serum, and urine samples were analyzed and we propose that salivary proteins can be used for evaluating treatment effectiveness and in improving patient compliance. The present discovery proteomics study demonstrates that salivary proteomic profile changes were found as a result of PLE treatment in prediabetic subjects that could specifically be used as potential protein signature candidates.

TFAP2C Promotes Cell Proliferation by Upregulating CDC20 and TRIB3 in Non-small Cell Lung Cancer Cells (비소세포폐암 발달 과정에서 TFAP2C에 의해 발현되는 CDC20과 TRIB3의 원암유전자 기능에 관한 연구)

  • Kim, Dain;Do, Hyunhee;Kang, JiHoon;Youn, BuHyun;Kim, Wanyeon
    • Journal of Life Science
    • /
    • v.29 no.6
    • /
    • pp.645-652
    • /
    • 2019
  • Non-small cell lung cancer (NSCLC) has the infamous distinction of being the leading cause of global cancer-related death over the past decade, and novel molecular targets are urgently required to change this status. We previously conducted a microarray analysis to investigate the association of transcription factor activating enhancer-binding protein 2C (TFAP2C) with NSCLC and revealed its oncogenic roles in NSCLC development. In this study, to identify new biomarkers for NSCLC, we focused on several oncogenes from the microarray analysis that are transcriptionally regulated by TFAP2C. Here, the cell division cycle 20 (CDC20) and tribbles pseudokinase 3 (TRIB3) were subsequently found as potential potent oncogenes as they are positively regulated by TFAP2C. The results showed that the mRNA and protein levels of CDC20 and TRIB3 were down-regulated in two NSCLC cell lines (NCI-H292 and NCI-H838), which were treated with TFAP2C siRNA, and that the overexpression of either CDC20 or TRIB3 was responsible for promoting cell viability in both NSCLC cell lines. In addition, apoptotic levels of NCI-H292 and NCI-H838 cells treated with TFAP2C siRNA were found to be suppressed by the overexpression of either CDC20 or TRIB3. Together, these results suggest that CDC20 and TRIB3 are positively related to NSCLC tumorigenesis and that they should be considered as potential prognostic markers for developing an NSCLC therapy.

Effects of acute heat stress on salivary metabolites in growing pigs: an analysis using nuclear magnetic resonance-based metabolomics profiling

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Ji, Sang Yun;Kim, Minji;Lee, Yookyung;Lee, Sung Dae;Jeong, Jin Young
    • Journal of Animal Science and Technology
    • /
    • v.63 no.2
    • /
    • pp.319-331
    • /
    • 2021
  • Heat stress (HS) causes adverse impacts on pig production and health. A potential biomarker of HS is required to predict its occurrence and thereby better manage pigs under HS. Information about the saliva metabolome in heat-stressed pigs is limited. Therefore, this study was aimed to investigate the effects of acute HS on the saliva metabolome and identify metabolites that could be used as potential biomarkers. Growing pigs (n = 6, 3 boars, and 3 gilts) were raised in a thermal neutral (TN; 25℃) environment for a 5-d adaptation period (CON). After adaptation, the pigs were first exposed to HS (30℃; HS30) and then exposed to higher HS (33℃; HS33) for 24 h. Saliva was collected after adaptation, first HS, and second HS, respectively, for metabolomic analysis using 1H-nuclear magnetic resonance spectroscopy. Four metabolites had significantly variable importance in the projection (VIP > 1; p < 0.05) different levels in TN compared to HS groups from all genders (boars and gilts). However, sex-specific characteristics affected metabolites (glutamate and leucine) by showing the opposite results, indicating that HS was less severe in females than in males. A decrease in creatine levels in males and an increase in creatine phosphate levels in females would have contributed to a protective effect from protein degradation by muscle damage. The results showed that HS led to an alteration in metabolites related to energy and protein. Protection from muscle damage may be attributed to the alteration in protein-related metabolites. However, energy-related metabolites showed opposing results according to sex-specific characteristics, such as sex hormone levels and subcutaneous fat layer. This study had shown that saliva samples could be used as a noninvasive method to evaluate heat-stressed pigs. And the results in this study could be contributed to the development of a diagnostic tool as a noninvasive biomarker for managing heat-stressed pigs.