Browse > Article
http://dx.doi.org/10.14348/molcells.2017.2298

Assessment of the Therapeutic Potential of Persimmon Leaf Extract on Prediabetic Subjects  

Khan, Mohd M. (Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland)
Tran, Bao Quoc (Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland)
Jang, Yoon-Jin (Department of Pharmacology, Chonbuk National University Medical School)
Park, Soo-Hyun (Clinical Trial Center for Functional Foods, Chonbuk National University Hospital)
Fondrie, William E. (University of Maryland School of Medicine)
Chowdhury, Khadiza (University of Maryland School of Medicine)
Yoon, Sung Hwan (Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland)
Goodlett, David R. (Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland)
Chae, Soo-Wan (Department of Pharmacology, Chonbuk National University Medical School)
Chae, Han-Jung (Department of Pharmacology, Chonbuk National University Medical School)
Seo, Seung-Young (Department of Internal Medicine, Research Institute of Clinical Medicine, Chonbuk National University Medical School and Hospital)
Goo, Young Ah (Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland)
Abstract
Dietary supplements have exhibited myriads of positive health effects on human health conditions and with the advent of new technological advances, including in the fields of proteomics, genomics, and metabolomics, biological and pharmacological activities of dietary supplements are being evaluated for their ameliorative effects in human ailments. Recent interests in understanding and discovering the molecular targets of phytochemical-gene-protein-metabolite dynamics resulted in discovery of a few protein signature candidates that could potentially be used to assess the effects of dietary supplements on human health. Persimmon (Diospyros kaki) is a folk medicine, commonly used as dietary supplement in China, Japan, and South Korea, owing to its different beneficial health effects including anti-diabetic implications. However, neither mechanism of action nor molecular biomarkers have been discovered that could either validate or be used to evaluate effects of persimmon on human health. In present study, Mass Spectrometry (MS)-based proteomic studies were accomplished to discover proteomic molecular signatures that could be used to understand therapeutic potentials of persimmon leaf extract (PLE) in diabetes amelioration. Saliva, serum, and urine samples were analyzed and we propose that salivary proteins can be used for evaluating treatment effectiveness and in improving patient compliance. The present discovery proteomics study demonstrates that salivary proteomic profile changes were found as a result of PLE treatment in prediabetic subjects that could specifically be used as potential protein signature candidates.
Keywords
biomarker candidates; diabetes; mass spectrometry; persimmon leaf extract; proteomics; saliva; serum; urine;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Goo, Y.A., Cain, K., Jarrett, M., Smith, L., Voss, J., Tolentino, E., Tsuji, J., Tsai, Y.S., Panchaud, A., Goodlett, D.R., et al. (2012). Urinary proteome analysis of irritable bowel syndrome (IBS) symptom subgroups. J. Proteome Res., 5650-5662.
2 Han, J., Kang, S., Choue, R., Kim, H., Leem, K., Chung, S., Kim, C., and Chung, J. (2002) Free radical scavenging effect of Diospyros kaki, Laminaria japonica and Undaria pinnatifida. Fitoterapia 73, 710-712.   DOI
3 Herrero, M., Simo, C., Garcia-Canas, V., Ibanez, E., and Cifuentes, A. (2012). Foodomics: MS-based strategies in modern food science and nutrition. Mass Spectrom. Rev. 31, 49-69.   DOI
4 Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M.Y., Geiger, T., Mann, M., and Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 13, 731-740.   DOI
5 Vitorino, R., Barros, A.S., Caseiro, A., Ferreira, R., and Amado, F. (2012). Evaluation of different extraction procedures for salivary peptide analysis. Talanta 94, 209-215.   DOI
6 Wang, L., Xu, M.L., Rasmussen, S.K., and Wang, M.-H. (2011). Vomifoliol 9-O-${\alpha}$-arabinofuranosyl $(1{\rightarrow}6)-{\beta}$-d-glucopyranoside from the leaves of Diospyros Kaki stimulates the glucose uptake in HepG2 and 3T3-L1 cells. Carbohydr. Res. 346, 1212-1216.   DOI
7 Wasik, A.A., Koskelainen, S., Hyvönen, M.E., Musante, L., Lehtonen, E., Koskenniemi, K., Tienari, J., Vaheri, A., Kerjaschki, D., Szalay, C., et al. (2014). Ezrin is down-regulated in diabetic kidney glomeruli and regulates actin reorganization and glucose uptake via GLUT1 in cultured podocytes. Am. J. Pathol. 184, 1727-1739.   DOI
8 Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009). Universal sample preparation method for proteome analysis. Nat. Methods 6, 359-362.   DOI
9 Yamagishi, S.I., and Imaizumi, T. (2005). Diabetic vascular complications: pathophysiology, biochemical basis and potential therapeutic strategy. Curr. Pharm. Des. 11, 2279-2299.   DOI
10 Hu, S., Loo, J.A., and Wong, D.T. (2007). Human saliva proteome analysis and disease biomarker discovery. Exp. Rev. Proteom. 4, 531-538.   DOI
11 Huang, Q. (2011). Ezrin/Radixin/Moesin proteins in the development of diabetes and its cardiovascular complications. J. Diabetes Metab. Disord. 1, S4:005.
12 Jung, U.J., Park, Y.B., Kim, S.R., and Choi, M.S. (2012). Supplementation of Persimmon leaf ameliorates hyperglycemia, dyslipidemia and hepatic fat accumulation in type 2 diabetic mice. PLoS One 7, e49030.   DOI
13 Merrell, K., Southwick, K., Graves, S.W., Esplin, M.S., Lewis, N.E., and Thulin, C.D. (2004). Analysis of low-abundance, low-molecularweight serum proteins using mass spectrometry. J. Biomol. Tech. 15, 238-248.
14 Kameda, K., Takaku, T., Okuda, H., Kimura, Y., Okuda, T., Hatano, T., Agata, I., and Arichi, S. (1987). Inhibitory effects of various flavonoids isolated from leaves of persimmon on angiotensin-converting enzyme activity. J. Nat. Prod. 50, 680-683.   DOI
15 Kim, J.K., Choi, S.J., Cho, H.Y., Hwang, H.J., Kim, Y.J., Lim, S.T., Kim, C.-J., Kim, H.K., Peterson, S., and Shin, D.-H. (2010). Protective effects of kaempferol (3,4′,5,7-tetrahydroxyflavone) against amyloid beta peptide (A${\beta}$)-induced neurotoxicity in ICR Mice. Biosci. Biotech. Bioch. 74, 397-401.   DOI
16 Zhang, J., Goodlett, D.R., Peskind, E.R., Quinn, J.F., Zhou, Y., Wang, Q., Pan, C., Yi, E., Eng, J., Aebersold, R.H., et al. (2005). Quantitative proteomic analysis of age-related changes in human cerebrospinal fluid. Neurobiol. Aging 26, 207-227.   DOI
17 Kawakami, K., Aketa, S., Nakanami, M., Iizuka, S., and Hirayama, M. (2010). Major water-soluble polyphenols, proanthocyanidins, in leaves of persimmon (Diospyros kaki ) and their ${\alpha}$-amylase inhibitory activity. Biosci. Biotech. Bioch. 74, 1380-1385.   DOI
18 Acosta-Martin, A.E., Panchaud, A., Chwastyniak, M., Dupont, A., Juthier, F., Gautier, C., Jude, B., Amouyel, P., Goodlett, D.R., and Pinet, F. (2011) Quantitative mass spectrometry analysis using PAcIFIC for the identification of plasma diagnostic biomarkers for abdominal aortic aneurysm. PLoS One 6, e28698.   DOI
19 Kawakami, K., Aketa, S., Sakai, H., Watanabe, Y., Nishida, H., and Hirayama, M. (2011). Antihypertensive and vasorelaxant effects of water-soluble Proanthocyanidins from persimmon leaf tea in spontaneously hypertensive rats. Biosci. Biotech. Bioch. 75, 1435-1439.   DOI
20 Kim, J.H., Stevens, R.C., MacCoss, M.J., Goodlett, D.R., Scherl, A., Richter, R.J., Suzuki, S.M., and Furlong, C.E. (2010). Identification and characterization of biomarkers of organophosphorus exposures in humans. Adv. Exp. Med. Biol. 660, 61-71.
21 Kotani, M., Matsumoto, M., Fujita, A., Higa, S., Wang, W., Suemura, M., Kishimoto, T., and Tanaka, T. (2000). Persimmon leaf extract and astragalin inhibit development of dermatitis and IgE elevation in NC/Nga mice. J. Allergy Clin. Immunol. 106, 159-166.   DOI
22 Kottgen, A., Hwang, S.J., Larson, M.G., Van Eyk, J.E., Fu, Q., Benjamin, E.J., Dehghan, A., Glazer, N.L., Kao, W.H.L., Harris, T.B., et al. (2010). Uromodulin Levels Associate with a Common UMOD Variant and Risk for Incident CKD. J. Am. Soc. Nephrol. 21, 337-344.   DOI
23 Kwon, S.H., Nam, J.I., Kim, S. H., Kim, J.H., Yoon, J.-H., and Kim, K.-S. (2009). Kaempferol and quercetin, essential ingredients in Ginkgo biloba extract, inhibit interleukin-$1{\beta}$-induced MUC5AC gene expression in human airway epithelial cells. Phytother. Res. 23, 1708-1712.   DOI
24 Astle, J., Ferguson, J.T., German J.B., Harrigan, G.G., Kelleher, N.L., Kodadek, T., Parks, B.A., Roth, M.J., Singletary, K.W., Wenger, C.D., et al. (2007). Characterization of proteomic and metabolomic responses to dietary factors and supplements. J. Nutr. 137, 2787-2793.   DOI
25 Ahn, H.S., Jeon, T.I., Lee, J.Y., Hwang, S.G., Lim, Y., and Park, D.K. (2002) Antioxidative activity of persimmon and grape seed extract: in vitro and in vivo. Nutr. Res. 22, 1265-1273.   DOI
26 Amara, U., Rittirsch, D., Flierl, M., Bruckner, U., Klos, A., Gebhard, F., Lambris, J.D., and Huber-Lang, M. (2008) Interaction between the coagulation and complement system. Adv. Exp. Med. Biol. 632, 71-79.
27 An, B.-J., Kwak, J.-H., Park, J.-M., Lee, J.-Y., Park, T.-S., Lee, J.-T., Son, J.-H., Jo, C., and Byun, M.-W. (2006). Inhibition of enzyme activities and the antiwrinkle effect of polyphenol isolated from the Persimmon Leaf (Diospyros kaki folium) on human skin. Dermatol. Surg. 31, 848-855.   DOI
28 Bae, U.J., Park, S.H., Jung, S.Y., Park, B.H., and Chae, S.W. (2015). Hypoglycemic effects of aqueous persimmon leaf extract in a murine model of diabetes. Mol. Med. Rep. 12, 2547-2554.   DOI
29 Barve, A., Chen, C., Hebbar, V., Desiderio, J., Saw, C.L.L., and Kong, A.N. (2009). Metabolism, oral bioavailability and pharmacokinetics of chemopreventive kaempferol in rats. Biopharm. Drug Dispos. 30, 356-365.   DOI
30 Labbe, D., Provencal, M., Lamy, S., Boivin, D., Gingras, D., and Beliveau, R. (2009). The flavonols quercetin, kaempferol, and myricetin inhibit hepatocyte growth factor-induced medulloblastoma cell migration. J. Nutrition 139, 646-652.   DOI
31 Lin, X., Cook, T.J., Zabetian, C.P., Leverenz, J.B., Peskind, E.R., Hu, S.-C., Cain, K.C., Pan, C., Edgar, J.S., Goodlett, D.R., et al. (2012). DJ-1 isoforms in whole blood as potential biomarkers of Parkinson disease. Sci. Rep. 2, 954, 1-10.
32 Lapolla, A., Seraglia, R., Molin, L., Williams, K., Cosma, C., Reitano, R., Sechi, A., Ragazzi, E., and Traldi, P. (2009). Low molecular weight proteins in urines from healthy subjects as well as diabetic, nephropathic and diabetic-nephropathic patients: a MALDI study. J. Mass Spectr. 44, 419-425.   DOI
33 Lee, J.S., Lee, M.K., Ha, T.Y., Bok, S.H., Park, H.M., Jeong, K.S., Woo, M.N., Do, G.M., Yeo, J.Y., and Choi, M.S. (2006). Supplementation of whole persimmon leaf improves lipid profiles and suppresses body weight gain in rats fed high-fat diet. Food Chem. Toxicol. 44, 1875-1883.   DOI
34 Li, W., Yi, S., Wang, Z., Chen, S., Xin, S., Xie, J., and Zhao, C. (2011). Self-nanoemulsifying drug delivery system of persimmon leaf extract: Optimization and bioavailability studies. Int. J. Pharm. 420, 161-171.   DOI
35 Lo, D.J., Kaplan, B., and Kirk, A.D. (2014). Biomarkers for kidney transplant rejection. Nat. Rev. Nephrol. 10, 215-225.   DOI
36 Lynn, K.L., and Marshall, R. (1984). Excretion of Tamm-Horsfall glycoprotein in renal disease. Clin. Nephrol. 22, 253-257.
37 Ma, C.-Y., Musoke, S.F., Tan, G.T., Sydara, K., Bouamanivong, S., Southavong, B., Soejarto, D.D., Fong, H.H.S., and Zhang, H.-J. (2008). Study of antimalarial activity of chemical constituents from diospyros quaesita. Chem. Biodivers. 5, 2442-2448.   DOI
38 Centers for Disease Control and Prevention (2011). National diabetes fact sheet: national estimates and general information on diabetes and prediabetes in the United States, 2011. Atlanta, GA: U.S. Department of Health and Human Services, Centers for Disease Control and Prevention.
39 Bei, W., Peng, W., Ma, Y., and Xu, A. (2004). NaoXinQing, an antistroke herbal medicine, reduces hydrogen peroxide-induced injury in NG108-15 cells. Neurosci. Lett. 363, 262-265.   DOI
40 Beretov, J., Wasinger V.C., Millar, E.K.A., Schwartz, P., Graham, P.H., and Li Y. (2015). Proteomic Analysis of Urine to Identify Breast Cancer Biomarker Candidates Using a Label-Free LC-MS/MS Approach. PLoS One 10, e0141876.   DOI
41 Chakraborty, J., Below, A.A., and Solaiman, D. (2004). Tamm-Horsfall protein in patients with kidney damage and diabetes. Urol. Res. 32, 79-83.   DOI
42 Chee, C.S., Chang, K.M., Loke, M.F., Angela Loo, V.P., and Subrayan, V. (2016). Association of potential salivary biomarkers with diabetic retinopathy and its severity in type-2 diabetes mellitus: a proteomic analysis by mass spectrometry. PeerJ.12, 4:e2022.
43 Chen, G., Lu, H., Wang, C., Yamashita, K., Manabe, M., Xu, S., and Kodama, H. (2002). Effect of five triterpenoid compounds isolated from leaves of Diospyros kaki on stimulus-induced superoxide generation and tyrosyl phosphorylation in human polymorphonuclear leukocytes. Clinica. Chimica. Acta 320, 11-16.   DOI
44 Cox, J., and Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367-1372.   DOI
45 Cox, J., Neuhauser, N., Michalski, A., Scheltema, R.A., Olsen, J.V., and Mann, M. (2011). Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res. 10, 1794-1805.   DOI
46 Mitri, J., and Hamdy, O. (2009). Diabetes medications and body weight. Exp. Opin. Drug Saf. 8, 573-584.   DOI
47 Mallavadhani, U.V., Panda, A.K., and Rao, Y.R. (1998). Review article number 134 pharmacology and chemotaxonomy of diospyros. Phytochemistry 49, 901-951.   DOI
48 Matheson, A., Willcox, M.D.P., Flanagan, J., and Walsh, B.J. (2010). Urinary biomarkers involved in type 2 diabetes: a review. Diabetes Metab. Res. Rev. 26, 150-171.   DOI
49 Matsumoto, M., Kotani, M., Fujita, A., Higa, S., Kishimoto, T., Suemura, M., and Milner, J.A. (2002). Functional foods and health: a US perspective. Br. J. Nutr. 88, S152.   DOI
50 Pan, S., Chen, R., Brand, R.E., Hawley, S., Tamura, Y., Gafken, P.R., Milless, B.P., Goodlett, D.R., Rush, J., and Brentnall, T.A. (2012). Multiplex targeted proteomic assay for biomarker detection in plasma: a pancreatic cancer biomarker case study. J. Proteome Res. 11, 1937-1948.   DOI
51 Pfleiderer, S., Zimmerhackl, L.B., Kinne, R., Manz, F., Schuler, G., and Brandis, M. (1993). Renal proximal and distal tubular function is attenuated in diabetes mellitus type 1 as determined by the renal excretion of ?1-microglobulin and Tamm-Horsfall protein. Clin. Invest. 71, 972-977.
52 Rogerio, A.P., Dora, C.L., Andrade, E.L., Chaves, J.S., Silva, L.F.C., Lemos-Senna, E., and Calixto, J.B. (2010). Anti-inflammatory effect of quercetin-loaded microemulsion in the airways allergic inflammatory model in mice. Pharmacol. Res. 61, 288-297.   DOI
53 Funayama, S., and Hikino, H. (1979). Hypotensive principles of Diospyros kaki leaves. Chem. Pharm. Bull. 27, 2865-2868.   DOI
54 Roscioni, S.S., de Zeeuw, D., Hellemons, M.E., Mischak, H., Zürbig, P., Bakker, S.J.L., Gansevoort, R.T., Reinhard, H., Persson, F., Lajer, M., et al. (2013). A urinary peptide biomarker set predicts worsening of albuminuria in type 2 diabetes mellitus. Diabetologia 56, 259-267.   DOI
55 Cox, J., Hein, M.Y., Luber, C.A., Paron, I., Nagaraj, N., and Mann, M. (2014). Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ . Mol. Cell. Proteom. 13, 2513-2526.   DOI
56 Das, S.K., and Elbein, S.C. (2006). The genetic basis of type 2 diabetes. Cell Sci. 2, 100-131.
57 Derosa, G., and Maffioli, P. (2011). Thiazolidinediones plus metformin association on body weight in patients with type 2 diabetes. Diabetes Res. Clin. Pract. 91, 265-270.   DOI
58 El-Achkar, T.M., and Wu, X.-R. (2012). Uromodulin in kidney injury: an instigator, bystander, or protector? Am. J. Kidney Dis. 59, 452-461.   DOI
59 Gao, B.B., Chen, X., Timothy, N., Aiello, L.P., and Feener, E.P.(2008). Characterization of the vitreous proteome in diabetes without diabetic retinopathy and diabetes with proliferative diabetic retinopathy. J. Proteome Res. 7, 2516-2255.   DOI
60 Gao, Y., Wang, Y., Ma, Y., Yu, A., Cai, F., Shao, W., and Zhai, G. (2009), Formulation optimization and in situ absorption in rat intestinal tract of quercetin-loaded microemulsion. Colloids Surf. B 71, 306-314.   DOI
61 Gerich, J.E. (1998). The Genetic Basis of Type 2 Diabetes Mellitus: Impaired Insulin Secretion versus Impaired Insulin Sensitivity. Endocr. Rev. 19, 491-503.   DOI
62 Goo, Y.A., and Goodlett, D.R. (2010). Advances in proteomic prostate cancer biomarker discovery. J. Proteomics 73, 1839-1850.   DOI
63 Sun, L., Zhang, J., Lu, X., Zhang, L., and Zhang, Y. (2011). Evaluation to the antioxidant activity of total flavonoids extract from persimmon (Diospyros kaki L.) leaves. Food Chem. Toxicol. 49, 2689-2696.   DOI
64 Sanna, M., Firinu, D., Manconi, P.E., Pisanu, M., Murgia, G., Piras, V., Castagnola, M., Messana, I., del Giacco, S.R., and Cabras, T. (2015). The salivary proteome profile in patients affected by SAPHO syndrome characterized by a top-down RP-HPLC-ESI-MS platform. Mol. BioSyst. 11, 1552-1562.   DOI
65 Shaw, J.E., Sicree, R.A., and Zimmet, P.Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 87, 4-14.   DOI
66 Shi, T., Song, E., Nie, S., Rodland, K.D., Liu, T., Qian, W.J., and Smith, R.D. (2016) Advances in targeted proteomics and applications to biomedical research. Proteomics 16, 2160-2182.   DOI
67 Takeda, T., McQuistan, T., Orlando, R.A., and Farquhar, M.G. (2001). Loss of glomerular foot processes is associated with uncoupling of podocalyxin from the actin cytoskeleton. J Clin. Invest. 108, 289-301.   DOI
68 Tanaka, T. (2002) Oral administration of persimmon leaf extract ameliorates skin symptoms and transepidermal water loss in atopic dermatitis model mice, NC/Nga. Br. J. Dermatol. 146, 221-227.   DOI
69 Thuong, P.T., Lee, C.H., Dao, T.T., Nguyen, P.H., Kim, W.G., Lee, S.J., and Oh, W.K. (2008). Triterpenoids from the Leaves of Diospyros kaki (Persimmon) and Their Inhibitory Effects on Protein Tyrosine Phosphatase 1B. J. Nat. Prod. 71, 1775-1778.   DOI
70 Goo, Y.A., Tsai, Y.S., Liu, A.Y., Goodlett, D.R., and Yang, C.C. (2010). Urinary proteomics evaluation in interstitial cystitis/painful bladder syndrome: a pilot study. Int. Braz J. Urol. 36, 464-479.   DOI
71 Torffvit, O., and Agardh, C.-D. (1994). Urinary excretion rate of NC1 and Tamm-Horsfall protein in the microalbuminuric type I diabetic patient. J. Diabetes Complications 8, 77-83.   DOI