• 제목/요약/키워드: Potential biomarkers

검색결과 378건 처리시간 0.019초

SKF96365 impedes spinal glutamatergic transmission-mediated neuropathic allodynia

  • Qiru Wang;Yang Zhang;Qiong Du;Xinjie Zhao;Wei Wang;Qing Zhai;Ming Xiang
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제27권1호
    • /
    • pp.39-48
    • /
    • 2023
  • Spinal nerve injury causes mechanical allodynia and structural imbalance of neurotransmission, which were typically associated with calcium overload. Storeoperated calcium entry (SOCE) is considered crucial elements-mediating intracellular calcium homeostasis, ion channel activity, and synaptic plasticity. However, the underlying mechanism of SOCE in mediating neuronal transmitter release and synaptic transmission remains ambiguous in neuropathic pain. Neuropathic rats were operated by spinal nerve ligations. Neurotransmissions were assessed by whole-cell recording in substantia gelatinosa. Immunofluorescence staining of STIM1 with neuronal and glial biomarkers in the spinal dorsal horn. The endoplasmic reticulum stress level was estimated from qRT-PCR. Intrathecal injection of SOCE antagonist SKF96365 dose-dependently alleviated mechanical allodynia in ipsilateral hind paws of neuropathic rats with ED50 of 18 ㎍. Immunofluorescence staining demonstrated that STIM1 was specifically and significantly expressed in neurons but not astrocytes and microglia in the spinal dorsal horn. Bath application of SKF96365 inhibited enhanced miniature excitatory postsynaptic currents in a dosage-dependent manner without affecting miniature inhibitory postsynaptic currents. Mal-adaption of SOCE was commonly related to endoplasmic reticulum (ER) stress in the central nervous system. SKF96365 markedly suppressed ER stress levels by alleviating mRNA expression of C/ EBP homologous protein and heat shock protein 70 in neuropathic rats. Our findings suggested that nerve injury might promote SOCE-mediated calcium levels, resulting in long-term imbalance of spinal synaptic transmission and behavioral sensitization, SKF96365 produces antinociception by alleviating glutamatergic transmission and ER stress. This work demonstrated the involvement of SOCE in neuropathic pain, implying that SOCE might be a potential target for pain management.

Microbiota, co-metabolites, and network pharmacology reveal the alteration of the ginsenoside fraction on inflammatory bowel disease

  • Dandan Wang;Mingkun Guo;Xiangyan Li;Daqing Zhao;Mingxing Wang
    • Journal of Ginseng Research
    • /
    • 제47권1호
    • /
    • pp.54-64
    • /
    • 2023
  • Background: Panax ginseng Meyer (P. ginseng) is a traditional natural/herbal medicine. The amelioration on inflammatory bowel disease (IBD) activity rely mainly on its main active ingredients that are referred to as ginsenosides. However, the current literature on gut microbiota, gut microbiota-host co-metabolites, and systems pharmacology has no studies investigating the effects of ginsenoside on IBD. Methods: The present study was aimed to investigate the role of ginsenosides and the possible underlying mechanisms in the treatment of IBD in an acetic acid-induced rat model by integrating metagenomics, metabolomics, and complex biological networks analysis. In the study ten ginsenosides in the ginsenoside fraction (GS) were identified using Q-Orbitrap LC-MS. Results: The results demonstrated the improvement effect of GS on IBD and the regulation effect of ginsenosides on gut microbiota and its co-metabolites. It was revealed that 7 endogenous metabolites, including acetic acid, butyric acid, citric acid, tryptophan, histidine, alanine, and glutathione, could be utilized as significant biomarkers of GS in the treatment of IBD. Furthermore, the biological network studies revealed EGFR, STAT3, and AKT1, which belong mainly to the glycolysis and pentose phosphate pathways, as the potential targets for GS for intervening in IBD. Conclusion: These findings indicated that the combination of genomics, metabolomics, and biological network analysis could assist in elucidating the possible mechanism underlying the role of ginsenosides in alleviating inflammatory bowel disease and thereby reveal the pathological process of ginsenosides in IBD treatment through the regulation of the disordered host-flora co-metabolism pathway.

The Slough of Cicadidae Periostracum Ameliorated Lichenification by Inhibiting Interleukin (IL)-22/Janus Kinase (JAK) 1/Signal Transducer and Activator of Transcription (STAT) 3 Pathway in Atopic Dermatitis

  • Ganghye Park;Namgyu Kwon;Mi Hye Kim;Woong Mo Yang
    • 한국축산식품학회지
    • /
    • 제43권5호
    • /
    • pp.859-876
    • /
    • 2023
  • It is known that animal-origin medicine could be one of effective treatment to remedy atopic dermatitis (AD) by controlling the cytokines. Cicadidae Periostracum (CP), the slough of Cryptotympana pustulata, has been frequently used for treating AD and skin affliction in traditional Korean Medicine. This study is aimed at investigating the ameliorating effects of CP on AD and its potential mechanism. The dinitrochlorobenzene sensitized mice were treated with CP for 2 weeks. The various biomarkers and the dermatitis scores presented that CP treatment can induce the visual and biological improvements of AD model. Pruritus, the most serious symptom of AD, which can cause repeated scratching behaviors and finally lead to lichenification, was reduced with CP treatment by regulating the inflammatory reactions. In addition, CP treatment diminished the number of mast cells that are known for causing inflammatory reactions. Moreover, it is proven that CP can decline secretion of interleukin-22, which means CP treatment has anti-inflammatory effects. CP treatment can correct the imbalance of helper T (Th)1 and Th2, downregulating thymic stromal lymphopoietin that leads to decrease of mRNA level of inflammatory cytokines. The crucial role of CP treatment is controlling of the Janus kinase 1/signal transducer and activator of transcription 3 pathway. In addition, CP treatment has the inhibitory effects on kallikrein related peptidase (KLK) 5 and KLK7. Taken together, CP treatment can ameliorate most symptoms and problems caused by AD disease, improving the AD patients' life quality.

Blood and milk metabolites of Holstein dairy cattle for the development of objective indicators of a subacute ruminal acidosis

  • Hyun Sang Kim;Jun Sik Eom;Shin Ja Lee;Youyoung Choi;Seong Uk Jo;Sang Suk Lee;Eun Tae Kim;Sung Sill Lee
    • Animal Bioscience
    • /
    • 제36권8호
    • /
    • pp.1199-1208
    • /
    • 2023
  • Objective: The purpose of this study was to perform a comparative analysis of metabolite levels in serum and milk obtained from cows fed on different concentrate to forage feed ratios. Methods: Eight lactating Holstein cows were divided into two groups: a high forage ratio diet (HF; 80% Italian ryegrass and 20% concentrate of daily intake of dry matter) group and a high concentrate diet (HC; 20% Italian ryegrass and 80% concentrate) group. Blood was collected from the jugular vein, and milk was sampled using a milking machine. Metabolite levels in serum and milk were estimated using proton nuclear magnetic resonance and subjected to qualitative and quantitative analyses performed using Chenomx 8.4. For statistical analysis, Student's t-test and multivariate analysis were performed using Metaboanalyst 4.0. Results: In the principal component analysis, a clear distinction between the two groups regarding milk metabolites while serum metabolites were shown in similar. In serum, 95 metabolites were identified, and 13 metabolites (include leucine, lactulose, glucose, betaine, etc.) showed significant differences between the two groups. In milk, 122 metabolites were identified, and 20 metabolites (include urea, carnitine, acetate, butyrate, arabinitol, etc.) showed significant differences. Conclusion: Our results show that different concentrate to forage feed ratios impact the metabolite levels in the serum and milk of lactating Holstein cows. A higher number of metabolites in milk, including those associated with milk fat synthesis and the presence of Escherichia coli in the rumen, differed between the two groups compared to that in the serum. The results of this study provide a useful insight into the metabolites associated with different concentrate to forge feed ratios in cows and may aid in the search for potential biomarkers for subacute ruminal acidosis.

Investigation of Anti-inflammatory and Anti-oxidative Activities of Lonicerae Flos, Citri Pericarpium and Violae Herba Complex (LCVC)

  • Hong Kyoung Kim
    • 대한한의학회지
    • /
    • 제43권4호
    • /
    • pp.52-73
    • /
    • 2022
  • Objectives: The anti-inflammatory and anti-oxidative activities of LCVC (Lonicerae Flos, Citri Pericarpium and Violae Herba Complex) have not been fully elucidated. The purpose of this study was to investigate the mechanisms underlying these effects in lipopolysaccharide (LPS)-induced RAW 264.7 macrophages. Methods: The evaluation of the anti-oxidative activity of LCVC was completed via DPPH and ABTS radical scavenging capacity, FRAP assay, measurement of polyphenol and flavonoid, assessment of ROS and NO levels in LPS-induced RAW 264.7 cells. The anti-inflammatory activity was defined by measuring the production of biomarkers (PGE2, IL-1B, IL-6 and TNF-𝛼), proteins (ERK, JNK, P38, Nrf2, Keap1, HO-1 and NQO1) and expressions of genes (iNOS, COX-2, IL-1𝛽, IL-6, TNF-𝛼, Nrf2, Keap1, HO-1 and NQO1) in LPS-induced RAW 264.7 cells. Results: LCVC have polyphenol and flavonoid contents. The results of DPPH and ABTS free radical scavenging capacity and FRAP assay showed that the anti-oxidative activity was increased. Production of ROS, NO, IL-6, TNF-𝛼, mRNA expressions of IL-1𝛽, IL-6, TNF-𝛼, Keap1, iNOS and COX-2 were decreased, and NQO1, Nrf2, and HO-1 were increased. In protein expression, JNK and Keap1 were decreased, NQO1, Nrf2 and HO-1 were increased, and no relationships were observed with the ERK and P38 by LCVC. Conclusions: These results suggest that LCVC may offer protective effects against LPS-induced inflammatory and oxidative responses through attenuating Nrf2/HO-1 pathway and MAPKs pathway. Therefore, we propose that LCVC has anti-inflammatory and anti-oxidative activities that have therapeutic potential in the treatment of inflammatory and oxidative disorders caused by the over-activation of macrophages.

Ubiquitin E3 ligases in cancer: somatic mutation and amplification

  • Eun-Hye Jo;Mi-Yeon Kim;Hyung-Ju Lee;Hee-Sae Park
    • BMB Reports
    • /
    • 제56권5호
    • /
    • pp.265-274
    • /
    • 2023
  • Defects in DNA double-strand break (DSB) repair signaling permit cancer cells to accumulate genomic alterations that confer their aggressive phenotype. Nevertheless, tumors depend on residual DNA repair abilities to survive the DNA damage induced by genotoxic stress. This is why only isolated DNA repair signaling is inactivated in cancer cells. DNA DSB repair signaling contributes to general mechanism for various types of lesions in diverse cell cycle phases. DNA DSB repair genes are frequently mutated and amplified in cancer; however, limited data exist regarding the overall genomic prospect and functional result of these modifications. We list the DNA repair genes and related E3 ligases. Mutation and expression frequencies of these genes were analyzed in COSMIC and TCGA. The 11 genes with a high frequency of mutation differed between cancers, and mutations in many DNA DSB repair E3 ligase genes were related to a higher total mutation burden. DNA DSB repair E3 ligase genes are involved in tumor suppressive or oncogenic functions, such as RNF168 and FBXW7, by assisting the functionality of these genomic alterations. DNA damage response-related E3 ligases, such as RNF168, FBXW7, and HERC2, were generated with more than 10% mutation in several cancer cells. This study provides a broad list of candidate genes as potential biomarkers for genomic instability and novel therapeutic targets in cancer. As a DSB related proteins considerably appear the possibilities for targeting DNA repair defective tumors or hyperactive DNA repair tumors. Based on recent research, we describe the relationship between unstable DSB repairs and DSB-related E3 ligases.

초발 정신증 환자에서 Mismatch Negativity를 이용한 1년 간의 예후 예측 연구 (Predicting Prognosis in Patients with First Episode Psychosis Using Mismatch Negativity : A 1 Year Follow-up Study)

  • 장문영;김민아;이탁형;권준수
    • 대한조현병학회지
    • /
    • 제20권1호
    • /
    • pp.15-22
    • /
    • 2017
  • Objectives : It has been shown that early intervention is crucial for favorable outcome in patients with schizophrenia. However, development of biomarkers for predicting prognosis of psychotic disorder still requires more research. In this study, we aimed to investigate whether baseline mismatch negativity (MMN) predict prognosis in patients with first episode psychosis (FEP). Methods : Twenty-four patients with FEP and matched healthy controls (HCs) were examined with MMN at baseline, and their clinical status were re-assessed after 1 year. Repeated-measures analysis of variance was performed to compare baseline MMN between the two groups. Multiple regression analysis was used to identify factors predicting prognosis in FEP patients during the follow-up period. Results : MMN amplitudes at baseline were significantly reduced in patients with FEP compared to healthy controls. In the multiple regression analysis, baseline MMN amplitude significantly predicted later improvement of performances on digit span and delayed recall of California Verbal Learning Test. However, baseline MMN did not predicted improvement of clinical symptoms. Conclusion : These results indicate that MMN may be a possible predictor of improvement in cognitive functioning in patients with FEP. Future study with larger sample and longer follow-up period would be needed to confirm the findings of the current study.

Identification of novel potential drugs and miRNAs biomarkers in lung cancer based on gene co-expression network analysis

  • Sara Hajipour;Sayed Mostafa Hosseini;Shiva Irani;Mahmood Tavallaie
    • Genomics & Informatics
    • /
    • 제21권3호
    • /
    • pp.38.1-38.8
    • /
    • 2023
  • Non-small cell lung cancer (NSCLC) is an important cause of cancer-associated deaths worldwide. Therefore, the exact molecular mechanisms of NSCLC are unidentified. The present investigation aims to identify the miRNAs with predictive value in NSCLC. The two datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed miRNAs (DEmiRNA) and mRNAs (DEmRNA) were selected from the normalized data. Next, miRNA-mRNA interactions were determined. Then, co-expression network analysis was completed using the WGCNA package in R software. The co-expression network between DEmiRNAs and DEmRNAs was calculated to prioritize the miRNAs. Next, the enrichment analysis was performed for DEmiRNA and DEmRNA. Finally, the drug-gene interaction network was constructed by importing the gene list to dgidb database. A total of 3,033 differentially expressed genes and 58 DEmiRNA were recognized from two datasets. The co-expression network analysis was utilized to build a gene co- expression network. Next, four modules were selected based on the Zsummary score. In the next step, a bipartite miRNA-gene network was constructed and hub miRNAs (let-7a-2-3p, let-7d-5p, let-7b-5p, let-7a-5p, and let-7b-3p) were selected. Finally, a drug-gene network was constructed while SUNITINIB, MEDROXYPROGESTERONE ACETATE, DOFETILIDE, HALOPERIDOL, and CALCITRIOL drugs were recognized as a beneficial drug in NSCLC. The hub miRNAs and repurposed drugs may act a vital role in NSCLC progression and treatment, respectively; however, these results must validate in further clinical and experimental assessments.

Identification of heat shock protein70-2 and protamine-1 mRNA, proteins, and analyses of their association with fertility using frozen-thawed sperm in Madura bulls

  • Zulfi Nur Amrina Rosyada;Berlin Pandapotan Pardede;Ekayanti Mulyawati Kaiin;Ligaya I.T.A Tumbelaka;Dedy Duryadi Solihin;Bambang Purwantara;Mokhamad Fakhrul Ulum
    • Animal Bioscience
    • /
    • 제36권12호
    • /
    • pp.1796-1805
    • /
    • 2023
  • Objective: This study aims to identify heat shock protein70-2 (HSP70-2) and protamine-1 (PRM1) mRNA and protein in Madura bull sperm and demonstrate their relation as bull fertility biomarkers. Methods: The Madura bull fertility rates were grouped based on the percentage of first service conception rate (%FSCR) as high fertility (HF) (79.04%; n = 4), and low fertility (LF) (65.84%; n = 4). mRNA of HSP70-2 and PRM1 with peptidylprolyl isomerase A (PPIA) as a housekeeping gene were determined by quantitative real-time polymerase chain reaction, while enzyme-linked immunoassay was used to measure protein abundance. In the post-thawed semen samples, sperm motility, viability, acrosome integrity, and sperm DNA fragmentation index were analyzed. Data analysis was performed on the measured parameters of semen quality, relative mRNA expression, and protein abundance of HSP70-2 and PRM1, among the bulls with various fertility levels (HF and LF) in a one-way analysis of variance analysis. The Pearson correlation was used to analyze the relationship between semen quality, mRNA, proteins, and fertility rate. Results: Relative mRNA expression and protein abundance of HSP70-2 and PRM1 were detected and were found to be highly expressed in bulls with HF (p<0.05) and were associated with several parameters of semen quality. Conclusion: HSP70-2 and PRM1 mRNA and protein molecules have great potential to serve as molecular markers for determining bull fertility.

Untargeted metabolomics using liquid chromatography-high resolution mass spectrometry and chemometrics for analysis of non-halal meats adulteration in beef meat

  • Anjar Windarsih;Nor Kartini Abu Bakar;Abdul Rohman;Nancy Dewi Yuliana;Dachriyanus Dachriyanus
    • Animal Bioscience
    • /
    • 제37권5호
    • /
    • pp.918-928
    • /
    • 2024
  • Objective: The adulteration of raw beef (BMr) with dog meat (DMr) and pork (PMr) becomes a serious problem because it is associated with halal status, quality, and safety of meats. This research aimed to develop an effective authentication method to detect non-halal meats (dog meat and pork) in beef using metabolomics approach. Methods: Liquid chromatography-high resolution mass spectrometry (LC-HRMS) using untargeted approach combined with chemometrics was applied for analysis non-halal meats in BMr. Results: The untargeted metabolomics approach successfully identified various metabolites in BMr DMr, PMr, and their mixtures. The discrimination and classification between authentic BMr and those adulterated with DMr and PMr were successfully determined using partial least square-discriminant analysis (PLS-DA) with high accuracy. All BMr samples containing non-halal meats could be differentiated from authentic BMr. A number of discriminating metabolites with potential as biomarkers to discriminate BMr in the mixtures with DMr and PMr could be identified from the analysis of variable importance for projection value. Partial least square (PLS) and orthogonal PLS (OPLS) regression using discriminating metabolites showed high accuracy (R2 >0.990) and high precision (both RMSEC and RMSEE <5%) in predicting the concentration of DMr and PMr present in beef indicating that the discriminating metabolites were good predictors. The developed untargeted LC-HRMS metabolomics and chemometrics successfully identified non-halal meats adulteration (DMr and PMr) in beef with high sensitivity up to 0.1% (w/w). Conclusion: A combination of LC-HRMS untargeted metabolomic and chemometrics promises to be an effective analytical technique for halal authenticity testing of meats. This method could be further standardized and proposed as a method for halal authentication of meats.