• Title/Summary/Keyword: Potential Interference

Search Result 323, Processing Time 0.027 seconds

Dietary Risk Assessment of Snf7 dsRNA for Coccinella septempunctata

  • Jung, Young Jun;Seol, Min-A;Choi, Wonkyun;Lee, Jung Ro
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.2 no.3
    • /
    • pp.210-218
    • /
    • 2021
  • Recently, pest-resistant living modified (LM) crops developed using RNA interference (RNAi) technology have been imported into South Korea. However, the potential adverse effects of unintentionally released RNAi-based LM crops on non-target species have not yet been reported. Coccinella septempunctata, which feeds on aphids, is an important natural enemy insect which can be exposed to the double-stranded RNA (dsRNA) produced by RNAi-based LM plants. To assess the risk of ingestion of Snf7 dsRNA by C. septempunctata, we first identified the species through morphological analysis of collected insects. A method for species identification at the gene level was developed using a specific C. septempunctata 12S rRNA. Furthermore, an experimental model was devised to assess the risk of Snf7 dsRNA ingestion in C. septempunctata. Snf7 dsRNA was mass-purified using an effective dsRNA synthesis method and its presence in C. septempunctata was confirmed after treatment with purified Snf7 dsRNA. Finally, the survival rate, development time, and dry weight of Snf7 dsRNA-treated C. septempunctata were compared with those of GFP and vATPase A dsRNA control treatments, and no risk was found. This study illustrates an effective Snf7 dsRNA synthesis method, as well as a high-concentration domestic insect risk assessment method which uses dsRNA to assess the risk of unintentional released of LM organisms against non-target species.

Sports Injury and Physiotherapy Services in the 2018 PyeongChang Winter Paralympic Games: Considerations and Potential Recommendations for Future Paralympics

  • Park, Haeun;Chang, Joon Young;Hwang, Jongseok;Lee, Young Hee;You, Joshua (Sung) Hyun
    • Physical Therapy Korea
    • /
    • v.29 no.3
    • /
    • pp.241-248
    • /
    • 2022
  • Background: The PyeongChang 2018 Winter Paralympic Games (WPG) being one of the most successful Paralympic Games (PG) in modern athletic world history, hosted the largest number of elite athletes representing 49 National Paralympic Committees (NPCs). Objects: The present investigation highlighted the demographic and clinical characteristics of injured athletes and non-athletes and the physiotherapy services provided during the PyeongChang 2018 WPG. Methods: Prospective descriptive epidemiology study, in which the study group comprised of 201 participants (51 athletes and 150 non-athletes) who were admitted to and utilized the polyclinic physiotherapy service of 2018 PyeongChang WPG in Physiotherapy Department of Paralympic Village from March 1, 2018 to March 20, 2018. Results: Qualitative frequency analysis of injury type demonstrated highest number of chronic injuries (51%, n = 100) in athletes and non-athletes. Anatomical injury site analysis revealed that the spine and shoulder areas were affected with equal frequency for athletes (54.9%, n = 14), whereas for non-athletes, the frequencies of spine and shoulder area injuries were 36.7% (n = 55) and 26% (n = 39), respectively. The Pyeongchang WPG showed a high rate of athletes visiting the physiotherapy service during the pre-competition period (33.3%, n = 50), which may have led to smaller incidence rate of traumatic injury. The physiotherapy treatment service analysis demonstrated that manual therapy (35.4%, n = 230) was most commonly utilized, followed by transcutaneous electrical nerve stimulation/interference current therapy (TENS/ICT), therapeutic massage and therapeutic exercise. Conclusion: We established the importance of prophylactic and preventive physiotherapy services to reduce the risk of sports injuries during WPG.

Incorporating Machine Learning into a Data Warehouse for Real-Time Construction Projects Benchmarking

  • Yin, Zhe;DeGezelle, Deborah;Hirota, Kazuma;Choi, Jiyong
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.831-838
    • /
    • 2022
  • Machine Learning is a process of using computer algorithms to extract information from raw data to solve complex problems in a data-rich environment. It has been used in the construction industry by both academics and practitioners for multiple applications to improve the construction process. The Construction Industry Institute, a leading construction research organization has twenty-five years of experience in benchmarking capital projects in the industry. The organization is at an advantage to develop useful machine learning applications because it possesses enormous real construction data. Its benchmarking programs have been actively used by owner and contractor companies today to assess their capital projects' performance. A credible benchmarking program requires statistically valid data without subjective interference in the program administration. In developing the next-generation benchmarking program, the Data Warehouse, the organization aims to use machine learning algorithms to minimize human effort and to enable rapid data ingestion from diverse sources with data validity and reliability. This research effort uses a focus group comprised of practitioners from the construction industry and data scientists from a variety of disciplines. The group collaborated to identify the machine learning requirements and potential applications in the program. Technical and domain experts worked to select appropriate algorithms to support the business objectives. This paper presents initial steps in a chain of what is expected to be numerous learning algorithms to support high-performance computing, a fully automated performance benchmarking system.

  • PDF

The Modulatory Effect of Sodium Propionate Treatment in the Expression of Inflammatory Cytokines and Intracellular Growth of Brucella abortus 544 in Raw 264.7 Cells

  • Heejin Kim;Tran Xuan Ngoc Huy;Trang Thi Nguyen;Alisha Wehdnesday Bernardo Reyes;WonGi Min;Hu Jang Lee;Jin Hur;Suk Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.8
    • /
    • pp.1006-1012
    • /
    • 2023
  • In this study, we investigated the effects of sodium propionate (SP) treatment on intracellular mechanism of murine macrophages and its contribution to host immunity during Brucella abortus 544 infection. The intracellular growth assay revealed that SP inhibited Brucella replication inside the macrophages. To determine intracellular signaling involved during SP treatment after Brucella infection, we analyzed the change of five different cytokines production relevant to SP such as TNF-α, IL-10, IFN-γ, IL-1β, and IL-6, and the results indicated that the boost with IL-10 was apparent throughout the culture period for 48 h as well as IL-1β which was apparent at 24 h post-infection and IFN-γ which was apparent at 24 h and 48 h in comparison to SP untreated groups. On the other way, SP-treated cells displayed suppressed production of TNF-α and IL-6 at all time points tested and 48 h post-infection, respectively. Furthermore, we conducted western blot to establish a cellular mechanism, and the result suggested that SP treatment attenuated p50 phosphorylation, part of the NF-κB pathway. These findings indicated that the inhibitory effect of SP against Brucella infection could be attributed through induction of cytokine production and interference on intracellular pathway, suggesting SP as a potential candidate for treating brucellosis.

Advantages and disadvantages of renewable energy-oil-environmental pollution-from the point of view of nanoscience

  • Shunzheng Jia;Xiuhong Niu;Fangting Jia;Tayebeh Mahmoudi
    • Advances in concrete construction
    • /
    • v.16 no.1
    • /
    • pp.69-78
    • /
    • 2023
  • This investigation delves into the adverse repercussions stemming from the impact of arsenic on steel pipes concealed within soil designated for rice cultivation. Simultaneously, the study aims to ascertain effective techniques for detecting arsenic in the soil and to provide strategies for mitigating the corrosion of steel pipes. The realm of nanotechnology presents promising avenues for addressing the intricate intersection of renewable energy, oil, and environmental pollution from a novel perspective. Nanostructured materials, characterized by distinct chemical and physical attributes, unveil novel pathways for pioneering materials that exert a substantial impact across diverse realms of food production, storage, packaging, and quality control. Within the scope of the food industry, the scope of nanotechnology encompasses processes, storage methodologies, packaging paradigms, and safeguards to ensure the safety of consumables. Of particular note, silver nanoparticles, in addition to their commendable antibacterial efficacy, boast anti-fungal and anti-inflammatory prowess, environmental compatibility, minimal irritability and allergenicity, resilience to microbial antagonism, thermal stability, and robustness. Confronting the pressing issue of arsenic contamination within both environmental settings and the food supply is of paramount importance to preserve public health and ecological equilibrium. In response, this study introduces detection kits predicated upon silver nanoparticles, providing an expeditious and economically feasible avenue for identifying arsenic concentrations ranging from 0.5 to 3 ppm within rice. Subsequent quantification employs Hydride Atomic Absorption Spectroscopy (HG-AAS), which features a detection threshold of 0.05 ㎍/l. A salient advantage inherent in the HG-AAS methodology lies in its capacity to segregate analytes from the sample matrix, thereby significantly reducing instances of spectral interference. Importantly, the presence of arsenic in the soil beneath rice cultivation establishes a causative link to steel pipe corrosion, with potential consequences extending to food contamination-an intricate facet embedded within the broader tapestry of renewable energy, oil, and environmental pollution.

Robust Radiometric and Geometric Correction Methods for Drone-Based Hyperspectral Imaging in Agricultural Applications

  • Hyoung-Sub Shin;Seung-Hwan Go;Jong-Hwa Park
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.3
    • /
    • pp.257-268
    • /
    • 2024
  • Drone-mounted hyperspectral sensors (DHSs) have revolutionized remote sensing in agriculture by offering a cost-effective and flexible platform for high-resolution spectral data acquisition. Their ability to capture data at low altitudes minimizes atmospheric interference, enhancing their utility in agricultural monitoring and management. This study focused on addressing the challenges of radiometric and geometric distortions in preprocessing drone-acquired hyperspectral data. Radiometric correction, using the empirical line method (ELM) and spectral reference panels, effectively removed sensor noise and variations in solar irradiance, resulting in accurate surface reflectance values. Notably, the ELM correction improved reflectance for measured reference panels by 5-55%, resulting in a more uniform spectral profile across wavelengths, further validated by high correlations (0.97-0.99), despite minor deviations observed at specific wavelengths for some reflectors. Geometric correction, utilizing a rubber sheet transformation with ground control points, successfully rectified distortions caused by sensor orientation and flight path variations, ensuring accurate spatial representation within the image. The effectiveness of geometric correction was assessed using root mean square error(RMSE) analysis, revealing minimal errors in both east-west(0.00 to 0.081 m) and north-south directions(0.00 to 0.076 m).The overall position RMSE of 0.031 meters across 100 points demonstrates high geometric accuracy, exceeding industry standards. Additionally, image mosaicking was performed to create a comprehensive representation of the study area. These results demonstrate the effectiveness of the applied preprocessing techniques and highlight the potential of DHSs for precise crop health monitoring and management in smart agriculture. However, further research is needed to address challenges related to data dimensionality, sensor calibration, and reference data availability, as well as exploring alternative correction methods and evaluating their performance in diverse environmental conditions to enhance the robustness and applicability of hyperspectral data processing in agriculture.

ppGalNAc T1 as a Potential Novel Marker for Human Bladder Cancer

  • Ding, Ming-Xia;Wang, Hai-Feng;Wang, Jian-Song;Zhan, Hui;Zuo, Yi-Gang;Yang, De-Lin;Liu, Jing-Yu;Wang, Wei;Ke, Chang-Xing;Yan, Ru-Ping
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.11
    • /
    • pp.5653-5657
    • /
    • 2012
  • Objectives: To investigate the effect of glycopeptide-preferring polypeptide GalNAc transferase 1 (ppGalNAc T1 ) targeted RNA interference (RNAi) on the growth and migration of human bladder carcinoma EJ cells in vitro and in vivo. Methods: DNA microarray assays were performed to determine ppGalNAc Ts(ppGalNAc T1-9) expression in human bladder cancer and normal bladder tissues. We transfected the EJ bladder cancer cell line with well-designed ppGalNAc T1 siRNA. Boyden chamber and Wound healing assays were used to investigate changes of shppGalNAc T1-EJ cell migration. Proliferation of shppGalNAc T1-EJ cells in vitro was assessed using [3H]-thymidine incorporation assay and soft agar colony formation assays. Subcutaneous bladder tumors in BALB/c nude mice were induced by inoculation of shppGalNAc T1-EJ cells and after inoculation diameters of tumors were measured every 5 days to determine gross tumor volumes. Results: ppGalNAc T1 mRNA in bladder cancer tissues was 11.2-fold higher than in normal bladder tissues. When ppGalNAc T1 expression in EJ cells was knocked down through transfection by pSUPER-shppGalNAc T1 vector, markedly reduced incorporation of [3H]-thymidine into DNA of EJ cells was observed at all time points compared with the empty vector transfected control cells. However, ppGalNAc T1 knockdown did not significantly inhibited cell migration (only 12.3%). Silenced ppGalNAc T1 expression significantly inhibited subcutaneous tumor growth compared with the control groups injected with empty vector transfected control cells. At the end of observation course (40 days), the inhibitory rate of cancerous growth for ppGalNAc T1 knockdown was 52.5%. Conclusion: ppGalNAc T1 might be a potential novel marker for human bladder cancer. Although ppGalNAc T1 knockdown caused no remarkable change in cell migration, silenced expression significantly inhibited proliferation and tumor growth of the bladder cancer EJ cell line.

IN-LINE NIR SPECTROSCOPY AS A TOOL FOR THE CONTROL OF FERMENTATION PROCESSES IN THE FERMENTED MEATS INDUSTRY

  • Tamburini, Elena;Vaccari, Giuseppe;Tosi, Simona;Trilli, Antonio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3104-3104
    • /
    • 2001
  • The research described here was undertaken with the aim of monitoring, optimizing and ultimately controlling the production of heterofermentative microbes used as starters in the salami industry. The use of starter cultures in the fermented meats industry is a well-established technique used to shorten and standardize the ripening process, and to improve and control the organoleptic quality of the final product. Starter cultures are obtained by the submerged cultivation of suitable microorganisms in stirred, and sometimes aerated, fermenters where monitoring of key physiological parameters such as the concentration of biomass, substrates and metabolites suffers from the general lack of real-time measurement techniques applicable to aseptic processes. In this respect, the results of the present work are relevant to all submerged fermentation processes. Previous work on the application of on-line NIR spectroscopy to the lactic acid fermentation (Dosi et al. - Monreal NIR1995) had successfully used a system based on a measuring cell included in a circulation loop external to the fermenter. The fluid handling and sterility problems inherent in an external circulation system prompted us to explore the use of an in-line system where the NIR probe is immersed in the culture and is thus exposed to the hydrodynamic conditions of the stirred and aerated fluid. Aeration was expected to be a potential source of problems in view of the possible interference of air bubbles with the measurement device. The experimental set-up was based on an in-situ sterilizable NIR probe connected to the instrument by means of an optical fiber bundle. Preliminary work was carried out to identify and control potential interferences with the measurement, in particular the varying hydrodynamic conditions prevailing at the probe tip. We were successful in defining the operating conditions of the fermenter and the geometrical parameters of the probe (flow path, positioning, etc.) were the NIR readings were reliable and reproducible. The system thus defined was then used to construct and validate calibration curves for tile concentration of biomass, carbon source and major metabolites of two different microorganisms used as salami starters. Real-time measurement of such parameters coupled with the direct interfacing of the NIR instrument with the PC-based measurement and control system of the fermenter enabled the development of automated strategies for the interactive optimization of the starter production process.

  • PDF

In vitro Study of Nucleostemin as a Potential Therapeutic Target in Human Breast Carcinoma SKBR-3 Cells

  • Guo, Yu;Liao, Ya-Ping;Zhang, Ding;Xu, Li-Sha;Li, Na;Guan, Wei-Jun;Liu, Chang-Qing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2291-2295
    • /
    • 2014
  • Although nucleolar protein nucleostemin (NS) is essential for cell proliferation and early embryogenesis and expression has been observed in some types of human cancer and stem cells, the molecular mechanisms involved in mediation of cell proliferation and cell cycling remains largely elusive. The aim of the present study was to evaluate NS as a potential target for gene therapy of human breast carcinoma by investigating NS gene expression and its effects on SKBR-3 cell proliferation and apoptosis. NS mRNA and protein were both found to be highly expressed in all detected cancer cell lines. The apoptotic rate of the pcDNA3.1-NS-Silencer group ($12.1-15.4{\pm}3.8%$) was significantly higher than those of pcDNA3.1-NS ($7.2-12.0{\pm}1.7%$) and non-transfection groups ($4.1-6.5{\pm}1.8%$, P<0.01). MTT assays showed the knockdown of NS expression reduced the proliferation rate of SKBR-3 cells significantly. Matrigel invasion and wound healing assays indicated that the number of invading cells was significantly decreased in the pcDNA3.1-NS-siRNA group (P<0.01), but there were no significant difference between non-transfected and over-expression groups (P>0.05). Moreover, RNAi-mediated NS down-regulation induced SKBR-3 cell G1 phase arrest, inhibited cell proliferation, and promoted p53 pathway-mediated cell apoptosis in SKBR-3 cells. NS might thus be an important regulator in the G2/M check point of cell cycle, blocking SKBR-3 cell progression through the G1/S phase. On the whole, these results suggest NS might be a tumor suppressor and important therapeutic target in human cancers.

A DC-DC Converter Design for OLED Display Module (OLED Display Module용 DC-DC 변환기 설계)

  • Lee, Tae-Yeong;Park, Jeong-Hun;Kim, Jeong-Hoon;Kim, Tae-Hoon;Vu, Cao Tuan;Kim, Jeong-Ho;Ban, Hyeong-Jin;Yang, Gweon;Kim, Hyoung-Gon;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.3
    • /
    • pp.517-526
    • /
    • 2008
  • A one-chip DC-DC converter circuit for OLED(Organic Light-Emitting Diode) display module of automotive clusters is newly proposed. OLED panel driving voltage circuit, which is a charge-pump type, has improved characteristics in miniaturization, low cost and EMI(Electro-Magnetic Interference) compared with DC-DC converter of PWM(Pulse Width Modulator) type. By using bulk-potential biasing circuit, charge loss due to parasitic PNP BJT formed in charge pumping, is prevented. In addition, the current dissipation in start-up circuit of band-gap reference voltage generator is reduced by 42% and the layout area of ring oscillator is reduced by using a logic voltage VLP in ring oscillator circuit using VDD supply voltage. The driving current of VDD, OLED driving voltage, is over 40mA, which is required in OLED panels. The test chip is being manufactured using $0.25{\mu}m$ high-voltage process and the layout area is $477{\mu}m{\times}653{\mu}m$.