• 제목/요약/키워드: Potential Gradient

검색결과 446건 처리시간 0.021초

고유진동수의 실험값을 사용한 복합재 적층판의 동적 모델링 개선 (Dynamic model updating of the laminated composite plate using natural frequencies measured from modal test)

  • 홍단비;유정규;박성호;김승조
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.340-346
    • /
    • 1998
  • In order to improve the prediction of dynamic behavior in structures, several lower vibration modes from FFT analysis through experiments are used to update the mechanical properties followed by the updated frequencies from numerical analysis. Performance index consists of the sum of error norms between the chosen frequencies and corresponding frequencies from numerical analysis. As an updating process of the natural frequencies, the optimization algorithm based on conjugate gradient method is adopted. The gradient of performance index is calculated using the sensitivity of selected eigenvalues with respect to each design parameter. The mechanical properties of lamina, E$\_$l/, E$\_$2/, .nu.$\_$12/ and G$\_$12/, are design parameters for the updating process. The proposed method is applied to predict the dynamic behavior of composite laminated plates of [0]$\_$8T/ and [.+-.45]$\_$2S/ separately or interchangeably. Also, the mixed case for [0]$\_$8T/ and [.+-.45]$\_$2S/ is exarm'ned to check the possibility for the improved prediction generally. The good agreement is obtained between the measured frequencies and the numerical ones. Based on the results for all the cases studied, the proposed approach has a clear potential in characterizing the mechanical properties of composite lamina.

  • PDF

Solid-salt pressure-retarded osmosis with exothermic dissolution energy for sustainable electricity production

  • Choi, Wook;Bae, Harim;Ingole, Pravin G.;Lee, Hyung Keun;Kwak, Sung Jo;Jeong, Nam Jo;Park, Soon-Chul;Kim, Jong Hak;Lee, Jonghwi;Park, Chul Ho
    • Membrane and Water Treatment
    • /
    • 제6권2호
    • /
    • pp.113-126
    • /
    • 2015
  • Salinity gradient power (SGP) systems have strong potential to generate sustainable clean electricity for 24 hours. Here, we introduce a solid-salt pressure-retarded osmosis (PRO) system using crystal salt powders rather than seawater. Solid salts have advantages such as a small storage volume, controllable solubility, high Gibbs dissolution energy, and a single type of water intake, low pretreatment costs. The power densities with 3 M draw solutions were $11W/m^2$ with exothermic energy and $8.9W/m^2$ without at 35 bar using a HTI FO membrane (water permeability $A=0.375L\;m^{-2}h^{-1}bar^{-1}$). These empirical power densities are ~13% of the theoretical value.

Image deblurring via adaptive proximal conjugate gradient method

  • Pan, Han;Jing, Zhongliang;Li, Minzhe;Dong, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권11호
    • /
    • pp.4604-4622
    • /
    • 2015
  • It is not easy to reconstruct the geometrical characteristics of the distorted images captured by the devices. One of the most popular optimization methods is fast iterative shrinkage/ thresholding algorithm. In this paper, to deal with its approximation error and the turbulence of the decrease process, an adaptive proximal conjugate gradient (APCG) framework is proposed. It contains three stages. At first stage, a series of adaptive penalty matrices are generated iterate-to-iterate. Second, to trade off the reconstruction accuracy and the computational complexity of the resulting sub-problem, a practical solution is presented, which is characterized by solving the variable ellipsoidal-norm based sub-problem through exploiting the structure of the problem. Third, a correction step is introduced to improve the estimated accuracy. The numerical experiments of the proposed algorithm, in comparison to the favorable state-of-the-art methods, demonstrate the advantages of the proposed method and its potential.

Tethered DNA shear dynamics in the flow gradient plane: application to double tethering

  • Lueth, Christopher A.;Shaqfeh, Eric S.G.
    • Korea-Australia Rheology Journal
    • /
    • 제19권3호
    • /
    • pp.141-146
    • /
    • 2007
  • We examine the wall contact of a $3\;{\mu}m$ tethered DNA chain's free end under shear with a focus on developing schemes for double-tethering in the application of making scaffolds for molecular wires. At this scale our results are found to be highly dependent on small length scale rigidity. Chain-end-wall contact frequency, mean fractional extension deficit upon contact, and standard deviation in extension upon contact are examined for scaling with dimensionless flow strength, Wi. Predictions made using a one dimensional approximation to the Smoluchowski equation for a dumbbell and three dimensional dumbbell simulations produce extension deficit, standard deviation, and frequency scaling exponents of -1/3, -1/3, and 2/3, respectively whereas more fine-grained Kratky-Porod (KP) simulations produce scaling exponents of -0.48, -0.42, and 0.76. The contact frequency scaling of 2/3 is derived from the known results regarding cyclic dynamics Analytical scaling predictions are in agreement with those previously proposed for ${\lambda}-DNA$. [Ladoux and Doyle, 2000, Doyle et al., 2000]. Our results suggest that the differences between the dumbbell and the KP model are associated with the addition of chain discretization and the correct bending potential in the latter. These scaling results will aide future exploration in double tethering of DNA to a surface.

Static analysis of functionally graded non-prismatic sandwich beams

  • Rezaiee-Pajand, M.;Masoodi, Amir R.;Mokhtari, M.
    • Advances in Computational Design
    • /
    • 제3권2호
    • /
    • pp.165-190
    • /
    • 2018
  • In this article, the static behavior of non-prismatic sandwich beams composed of functionally graded (FG) materials is investigated for the first time. Two types of beams in which the variation of elastic modulus follows a power-law form are studied. The principle of minimum total potential energy is applied along with the Ritz method to derive and solve the governing equations. Considering conventional boundary conditions, Chebyshev polynomials of the first kind are used as auxiliary shape functions. The formulation is developed within the framework of well-known Timoshenko and Reddy beam theories (TBT, RBT). Since the beams are simultaneously tapered and functionally graded, bending and shear stress pushover curves are presented to get a profound insight into the variation of stresses along the beam. The proposed formulations and solution scheme are verified through benchmark problems. In this context, excellent agreement is observed. Numerical results are included considering beams with various cross sectional types to inspect the effects of taper ratio and gradient index on deflections and stresses. It is observed that the boundary conditions, taper ratio, gradient index value and core to the thickness ratio significantly influence the stress and deflection responses.

건물예냉과 실내온도의 선형상승에 의한 피크냉방수요 저감 (Reducing Peak Cooling Demand Using Building Precooling and Modified Linear Rise of Indoor Space Temperature)

  • 이경호;양승권;한승호
    • 설비공학논문집
    • /
    • 제22권2호
    • /
    • pp.86-96
    • /
    • 2010
  • The paper describes development and evaluation of a simple method for determining gradient of modified linear setpoint variation to reduce peak electrical cooling demand in buildings using building precooling and setpoint adjustment. The method is an approximated approach for minimizing electrical cooling demand during occupied period in buildings and involves modified linear adjustment of cooling setpoint temperature between $26^{\circ}C$ and $28^{\circ}C$. The gradient of linear variation or final time of linear increase is determined based on the cooling load shape in conventional cooling control having a constant setpoint temperature. The potential to reduce peak cooling demand using the simple method was evaluated through building simulation for a calibrated office building model considering four different weather conditions. The simple method showed about 30% and 20% in terms of reducing peak cooling demand and chiller power consumption, respectively, compared to the conventional control.

온도 구배열자극측정법의한 XLPE하전입자의 극성판정 (Polarity of Charged Particles n XLPE Measured by Temperature Gradient Thermally Stimulated Surface Potential)

  • 국상훈
    • 대한전기학회논문지
    • /
    • 제34권4호
    • /
    • pp.144-152
    • /
    • 1985
  • This paper temperature gradient thermally stimulated surface potentian (TG-TSSP) in measurements are applied to the study of the polarity of trapped and ionic carriers in cross-linked polyethylene (XLPE) filsm. In the thermally stimulated current in uniform temperature (TSC) of XLPE five peaks appear as indicated of the A B C D and E. In this paper A (at about -120$^{\circ}C$) D (at about 70$^{\circ}C$) and E (at about 110$^{\circ}C$) peaks are investigated. A peak is due to the biassing voltage and biassing temperature. Appear in to the glass transition temperature territory and caused in to the polarization of dipole. D peak is due to the depolarization of ionic space charge and E peak due to the detrapping of carriers injected from the electrodes. TG-TSSP and TSSP are measured to study the polarity of ionic carrier (D peak). In the unsatureated region of ionic space charge polarization, TG-TSSP is lower than TSSP during the initial stage of heating. Result of the experiment for E peak, TG-TSSP is higher than TSSP during the initial stage of heating and these results do not depend on the polarity of biassing voltage, and E peak is concerned with positive carriers (Holes).

  • PDF

다층 경사기능재료의 제조를 위한 Zr(Y,Ce)$O_2$ TZP/Mullite 현탁액의 가압여과 (Pressure Filtration of Zr(Y,Ce)$O_2$ TZP/Mullite Suspensions for the Preparations of Functionally Gradient Materials with Multi-layer)

  • 이상진;박상희;박홍채;전병세
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.693-699
    • /
    • 2000
  • Casting behavior of Zr(Y,Ce)O2 TZP/Mullite suspension during pressure filtration was investigated to prepare multi-layered Functionally Gradient Materials(FGM). The dispersion stabilities of each layer suspension were investigated by examination of zeta potential and viscosity. The each suspensions with 20 vol.% solid loading and 100 첸 of viscosity was prepared after fix of the dispersing agent (Sodium hexa-meta phosphate) and the binder (Hydroxyethyl cellulose), and then the cakes were formed at the 2.5 MPa~10.0MPa pressure range. The cake thickness of all suspensions was increased with the square root of time at the constant pressure, and the relations between filtration pressure(P)a nd dehydration rate (Q=dh/dt) showed that the flows of filtrates in the consolidated layers were laminar. The permeabilities were nearly constant during filtration, and kozeny constants(Kc) of the suspensions were 4.8~6.7. These valumes were seen as close to 5, which might be homogeneous particle packing during filtration. On the basis of those data, the multi layered compaction with 9 mm thickness and 52.5% green density was prepared by continuous pressure filtration.

  • PDF

Field-Induced Translation of Single Ferromagnetic and Ferrimagnetic Grain as Observed in the Chamber-type μG System

  • Kuwada, Kento;Uyeda, Chiaki;Hisayoshi, Keiji;Nagai, Hideaki;Mamiya, Mikito
    • Journal of Magnetics
    • /
    • 제18권3호
    • /
    • pp.308-310
    • /
    • 2013
  • Translation induced by the field-gradient force is being observed for a single ferromagnetic iron grain and a ferrimagnetic grain of a ferrite sample ($CuFe_2O_4$). From measurements on the translation, precise saturated magnetization of $M_S$ is possible for a single grain. The method is based on the energy conservation rule assumed for the grain during its translation and the grain is translated through a diffuse area under microgravity conditions. The results of the two materials indicate that a field-induced translation of grain bearing spontaneous moment is generally determined by a field-induced potential $-mM_SH(x)$ where m denotes the mass of sample. According to the above translations, the detection of $M_S$ is not interfered by any signals from the sample holder. The $M_S$ measurement does not require m value. By observing translations resulting from fieldinduced volume forces, the magnetization of a single grain is measurable irrespective of its size; the principle is also applicable to measuring susceptibility of diamagnetic and paramagnetic materials.

Magnetic separation device for paramagnetic materials operated in a low magnetic field

  • Mishima, F.;Nomura, N.;Nishijima, S.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제24권3호
    • /
    • pp.19-23
    • /
    • 2022
  • We have been developing a magnetic separation device that can be used in low magnetic fields for paramagnetic materials. Magnetic separation of paramagnetic particles with a small particle size is desired for volume reduction of contaminated soil in Fukushima or separation of iron scale from water supply system in power plants. However, the implementation of the system has been difficult due to the needed magnetic fields is high for paramagnetic materials. This is because there was a problem in installing such a magnet in the site. Therefore, we have developed a magnetic separation system that combines a selection tube and magnetic separation that can separate small sized paramagnetic particles in a low magnetic field. The selection tube is a technique for classifying the suspended particles by utilizing the phenomenon that the suspended particles come to rest when the gravity acting on the particles and the drag force are balanced when the suspension is flowed upward. In the balanced condition, they can be captured with even small magnetic forces. In this study, we calculated the particle size of paramagnetic particles trapped in a selection tube in a high gradient magnetic field. As a result, the combination of the selection tube and HGMS (High Gradient Magnetic Separation-system) can separate small sized paramagnetic particles under low magnetic field with high efficiency, and this paper shows its potential application.