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Tethered DNA shear dynamics in the flow gradient plane: application to double tethering
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Abstract

We examine the wall contact of a 3 um tethered DNA chain’s free end under shear with a focus on devel-
oping schemes for double-tethering in the application of making scaffolds for molecular wires. At this scale
our results are found to be highly dependent on small length scale rigidity. Chain-end-wall contact frequency,
mean fractional extension deficit upon contact, and standard deviation in extension upon contact are exam-
ined for scaling with dimensionless flow strength, Wi. Predictions made using a one dimensional approx-
imation to the Smoluchowski equation for a dumbbell and three dimensional dumbbell simulations produce
extension deficit, standard deviation, and frequency scaling exponents of —1/3, —1/3, and 2/3, respectively
whereas more fine-grained Kratky-Porod (KP) simulations produce scaling exponents of —0.48, —0.42, and
0.76. The contact frequency scaling of 2/3 is derived from the known results regarding cyclic dynamics
Analytical scaling predictions are in agreement with those previously proposed for A-DNA. [Ladoux and
Doyle, 2000, Doyle et al., 2000]. Our results suggest that the differences between the dumbbell and the KP
model are associated with the addition of chain discretization and the correct bending potential in the latter.

These scaling results will aide future exploration in double tethering of DNA to a surface.
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1 Introduction

Recent successes in DNA metallization [Braun et al.,
1998] have inspired a variety of new applications utilizing
DNA as molecular wires. One such application is the use
of metallized DNA as electrical contacts to organic single
molecules, allowing for the study of the electrical prop-
erties of single molecules and providing tremendous infor-
mation toward the growing field of “plastic electronics.” In
this context, we are referring to the synthesis of a DNA-
organic molecule-DNA sandwich (DOD) followed by sub-
sequent stretching and double-tethering of the DOD be-
tween two gold electrodes. Metallization of the DNA com-
pletes the molecular circuit. Flow processing has been sug-
gested as a means of stretching and orienting these DOD
bridges between electrodes [Braun et al., 1998] and these
bridges are typically between 1—3 um in total length. For
example, one can first tether one end to an electrode, stret-
ch the free end with shear flow, and then tether the free end
to a second electrode. Thus precise control of tethered
DNA chains subjected to shear flow is desired to repeat-
ably create these DOD bridges.

In the present manuscript, the detailed dynamics of a
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DNA chain in flow are examined through scaling argu-
ments and simulations in the flow-gradient plane. Using
Brownian Dynamic simulations of wormlike-chains, we
have developed a statistical description of the contact of a
wall-tethered 3 um (22 Kuhn Step) DNA chain’s free end
with the wall. Specifically, we will determine how chain-
wall contact frequency, mean fractional extension deficit
upon contact, and the standard deviation in extension upon
contact scale with flow strength. Ultimately, our results
will afford precise control over the creation of DNA
bridges.

Stretching of tethered polymer chains subject to shear
flow has been studied via simulation in weak flows
[Schroeder et al., 2005] and for both weak and strong flows
focusing on the flow-vorticity plane [Ladoux and Doyle,
2000, Doyle et al., 2000]. Fluorescent microscopy exper-
iments performed by Doyle introduced the idea of cyclic
dynamics of tethered DNA chains under weak flows.
Schroeder, with the aide of Brownian dynamics simula-
tions, demonstrated the presence of a characteristic fre-
quency for cyclic motion of a tethered polymer in shear
flow when 1 < Wi<10, where the Weissenberg number, 7,
is the shear rate times the longest polymer relaxation time.

Ladoux and Doyle performed fluorescent microscopy
experiments and Brownian dynamics bead-spring simu-
lations for 21, 42, and 63 um DNA chains. They showed
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that the mean extension deficit, the extension in the flow
direction subtracted from the chain contour length, of a
tethered DNA chain scales with Wi, For freely jointed
chai%s, they predicted mean extension deficit scaling of
wi'?,

All experiments to date included examinations of chain
dynamics in the flow-vorticity plane, affording no insight
into chain dynamics very near the wall or in the flow-gra-
dient plane. Previous simulations consist of strictly bead-
spring simulations which may not capture the appropriate
dynamics for short DNA segments. It is believed that
chain-end-wall contact dynamics are highly dependent on
the bending modulus of a short semiflexible chain. Taking
this into consideration, Brownian dynamic simulations in
the shear flow-gradient plane using semiflexible Kratky-
Porod chains [Kratky and Porod, 1949] are required to
fully resolve chain-end-wall contact statistics.

2. Models

2.1. Dumbbell Approximation

Bead-rod and bead-spring models are employed in sub-
sequent sections to study tethered chain dynamics near a
wall. However, in order to derive scaling arguments, a sim-
pler model may be used including representing the chain as
a single, freely draining spring tethered to the wall. Similar
methods have been utilized in nonlinear [Beck and
Shagfeh, 2006] flows. The probability density, ‘¥, of the
spring’s free end is given by the Smoluchowski equation

[Bird et al., 1987]:
0¥, 0 (Ou o 0¥
5t AR (E qu gaR H{L} “Drar D
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where R represents the position of the spring’s end; 7 is
the rate of strain tensor; and the third term in the equation
represents the entropic spring force, which will be
described in further detail later. The diffusion coefficient,
D, of the bead representing the chain end is defined as

/%T, where k;T is the thermal energy of the fluid and £ is
the bead drag coefficient of the end bead.
2.2. The Bead Spring Chain Model

The dumbbell model is useful for analytical work and for
scaling arguments, but if internal modes of the chain bring
important new physics a bead spring model can be used. In
this case, the polymer chain is modeled by a series of
Brownian particles held together by entropic springs.
Ermak and McCammon [Ermak and McCammon, 1978]
developed an equation for the spatial evolution of hydro-
dynamically interacting Brownian particles under con-
straining forces. For 150 Kuhn step A-DNA, it has been
shown that hydrodynamic interactions are rather insignif-
icant in shear and extensional flow [Hsich et al., 2003];
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therefore, it follows that for a 22 Kuhn step chain far from
equilibrium, hydrodynamic interactions can be safely
neglected. A system of stochastic differential equations
describing the positions, R, of freely draining interacting

beads, i=1, 2, ..N, is as follows [Ottinger, 1996]:
0; i=0

dR,= (“?+é(F?N+Ff«AFf_1))dt+ 2]2’? 25T - i=2:N-1
(“?+é(F?”+FjVA1))dt+ 2ksT aw, =N

@)

This results from a balance between disturbances caused
by the free stream velocity, u;; a short range wall exclu-
sion force, F, ; the entropic spring force from spring i, F;;
and solvent-bead collisions expressed as an isotropic
Weiner process, dW, [Ottinger, 1996]. Each spatial com-
ponent of dW, is modeled as a Gaussian random number
with a variance of df [Somasi et al., 2002]. The first bead
in the chain is tethered to the wall and accordingly has no
net disturbance. Note that while this model captures the
correct extensional force of the worm-like chain using the
appropriate spring force F; as discussed below, it does not
capture the appropriate bending modulus over the length of
the chain [Bustamante et al., 1994, Marko and Siggia,
1995].

The only non zero component of the free stream velocity
is defined to be that for flow in the x-direction, whereas the
wall normal is defined to be in the y-direction, resulting in
u’=y[y, 0, 0], where y is the shear rate.

The wall exclusion force is a non-physical interaction
used only to prevent the bead from penetrating the wall.
Ideally, this potential should be infinitely large at the wall
and have a very short range of influence. However, due to
simulation convergence issues and the use of a fixed time
step, we employ the interaction used elsewhere [Beck and
Shagfeh, 2006, Jendrejack et al., 2004]:

kpT,
¥ =) Cwvo— by (SW 1) n; y;<dy 3)

7

0; V> 8y

where n=[0, 1, 0] is the vector normal to the wall and y;
is the distance between bead j and the wall. The constant
W is the boundary thickness of the wall force, chosen to be
equal to twice the standard deviation of the Brownian dis-

turbance, dy=2

tuation will not force a bead through the wall with 95%
confidence. The strength of the wall force, Cyp=25, was
chosen to prevent the bead from penetrating the wall on a
frequent basis [Beck and Shagfeh, 2006, Jendrejack et al.,

}Mdt, to ensure that a Brownian fluc-
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2004]. The time step, df=10", is chosen such that & <<
R,, where R, is the radius of gyration for the entire chain,
and thus the wall force has a negligible effect on the wall
contact dynamics.

The wormlike chain force law [Bustamante et al., 1994,
Marko and Siggia, 1995] is used for the entropic spring
force between consecutive beads in the chain.

S _ d 9
F =1 7o
O07_ L 1 O
=== ———1+4= 4
{LJ 6Qi((l—Qi/L)2 L) @
3kyT .
The force constant, H= —= , where N, is the number of

ksYk

Kuhn steps per spring, bk is the length of a Kuhn step, and
the connecter vector, Q,=R,.;—R,, has magnitude, Q,, which
is smaller than the maximum extension, L, of the spring.

2.3. Kratky-Porod Chain

In order to elucidate chain end dynamics near the wall,
one may use a more fine grained model. The appropriate
model is a modified version of the Kramer’s feely-jointed
bead rod chain model [Kramers, 1956] including the bend-
ing modulus, ie. the Kratky-Porod model [Kratky and
Porod, 1949]. This is the model from which the wormlike
spring law, equation (4) is derived [Marko and Siggia,
1995]. The polymer chain is represented by a bead-rod
chain with more segments, N— 1, than Kuhn steps, N,. This
way it is possible to allow the bending modulus to control
the persistence length regardless of the discretization of the
chain [Ottinger, 1996].

A balance of the hydrodynamic force, the wall force,
bending constraint forces, rod tensions, and the Brownian
force results in:

JR :( o, Vow e, oT

s O F D l- 5)

The tension forces, needed to keep the rod lengths fixed,
are unknown a priori and are calculated iteratively using
Picard’s method [Liu, 1989, Somasi et al., 2002] until the
following constraint is satisfied:

2k,T
g

IR —R|-]<e (6)

where / is the length of the discretized rod segment and ¢
is chosen to be /*10°°.
A stiffer wall force,

W 1 B 1
F; _CWkBT(exp[sh,./sw]—l ewp[5]-1
0, h>=6 (7)

)n; hy< Sy

than previously used for the bead-spring model can be
implemented with the addition of an adaptive time step
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algorithm. This will help improve the dynamics of the
chain end very near the wall. The boundary thickness is

1
m Rg, and CW

is chosen to be comparable to other bending and tension
forces.

Discretization of the bending force for a continuous
chain yields,

again chosen to be very small, 8,=0.03/=

2T R, 2 +4R,\—6R +4R.,~R,.0);
3<i<N-2
FO= 2, TR . SR+ 4R R (®)

i=2(top), N—1(bot)
%JkBT(—RiJrzRiiﬁRiﬁ); i=2(+), N-1(-)
where Iy is the persistence length of the chain in the limit
of infinite bead number [Yamakawa, 1971, Evans, 1995].
Tor finite chains, the actual persistence length, /r , can be
calculated by fitting the simulation results for the chain
tangent correlation function.

<Q,--Ql>:exp[—%l’] ©

Thus, the actual persistence length of the chain is known
and N or [, is determined iteratively to reproduce the
appropriate number of Kuhn steps.

3 Results and Discussion

3.1. Dumbbell Predictions
To examine the flow strength scaling of the extension,
the variance in extension, and the frequency of chain-end
contact with the wall, we begin with the dimensionless
form of equation 1.
a;114—2.(WiKr‘{’—f[r]r‘I’):—1—2-6—qj (10)
ot Or
in dimensionless variables r=R/L and t=H/{ and includ-
ing the dimensionless parameters: the Weissenberg num-
ber, Wi= y, /H, and the number of Kuhn steps in the entire
chain, N,. To further simplify the problem, the chain is
assumed to be near maximum extension for strong flows.
Therefore, the spring force asymptotically approaches

f~ 1 >
6(1—x)
Integrating equation 10 over the vorticity direction, z,

followed by integration over the flow direction, x, pro-
duces, with overbar defined as: == f: j;o -dzdx

4y
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¥ o 1 av
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To eliminate any dependence on x in equation 12, we bal-
ance the flow force and the spring force in the flow direc-

tion, Wi y~ and thus calculate the first term in an

29

. 6(1—)&) . X
expansion around (1-x)=0. This results in yx————
| 6Wi(1—-x)
~—————, and substituting into equation 12 yields:
6Wi(1-x)
a¥_of 1 o¥, . 2
o 5y(3Nk8y + Wiy ‘I’] (13)

thus, at steady state a solution of the following form can
be derived:

173

< _3(Wi Ny

¥ T3] (14)

exp[-Wi Ny']

This approximate probability density function enables
the calculation of average properties, <>=["[* [ -dxdydz,
to yield the scalings:

<y>N Wi 1/3Nk— 1/3

<y~ W N2

(15)

and returning to our approximation, y~1/6Wi(1-x)>, or
<> ~ 1/Wi<l —x>*~1/Wi<(1 -x)>>, we find:

<1 —X> VVZ‘— 1/3Nk1/6

—1/377 1
O}NVI/Z Nk /6

(16)

These results are in agreement with the Wi scalings derived
by Ladoux et. al. [Ladoux and Doyle, 2000].

When analyzing the frequency at which the chain-end
contacts the wall, we first re-examine the 1-D Smolu-
chowski equation, equation 13. If we assume an initial
stretched chain at a distance y, from the wall, there are dif-
fusive and entropic spring processes driving the chain end
to the wall. The time-dependent equation 13 can not be
solved analytically, but since the equilibrium distribution is
derived by balancing these two processes, scalings can be
found by assuming a purely diffusive process. The diffu-
sion equation then implies that the time it takes to diffuse
to the wall is:

2
my—i 17
22—
3N,
and, assuming the distribution for y, in equation 14, the fre-

quency of chain-end contact scales as
f~ WEN, 1 (18)

This argument is equivalent to saying that the frequency of
wall contact is proportional to the inverse time that a
stretched chain takes to diffuse a distance <y*>~ Wi P*N;??
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WLC Dumbbell, Nks=22, upon contact
Kratky-Porod, Nb=37, Nk=22, upon contact
Kratky-Porod, Nb=37, Nk=22
Kratky-Porod, Nb=85, Nk=22, upon contact
Kratky-Porod, Nb=85, Nk=22

4ardoe

0.01 +

0.001

1e-1 1e‘+0 ' 1e+1 1el+2 1e+3 1el+4 1e+5
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Fig. 1. Kratky-Porod and dumbbell simulation results for dimen-

sionless extension deficit and deficit upon wall contact
versus Wi for 22 Kuhn step wormlike chains. Kratky-

Porod chains consisting of 37 and 85 beads require an l_;’

of 1 and 2.5, respectively, to reproduce 22 Kuhn steps.
Solid lines represent least square fits to the asymptotic
behavior.

and thus is consistent with the original of Doyle and
coworkers [Ladoux and Doyle, 2000, Doyle et al., 2000].

3.2. Simulations

Simulation results are compared to predictions for wall-
contact parameter scaling with Wi for 22 Kuhn step chains.
Bead contact is defined as the point at which the distance
from the wall is less than &8 The Weissenberg number is
a measure of the flow strength relative to the polymer
relaxation time: Wi=Pek, where A is the dimensionless,
longest polymer relaxation time calculated by 30% exten-
sion relaxation [Hsieh et al., 2003, Beck and Shagfeh,
2006]. All simulations are run for 22 Kuhn step chains. A
commonly accepted condition for the bead spring model is
Nis > 10 [Somasi et al., 2002]. This limits our simulations
to one or two springs when modeling a 22 Kuhn step
chain. Extension results were found to be similar for these
two cases and only results for dumbbell simulations are
presented.

Fig. 1 shows a plot of the extension deficit, <1 —x/L>,
versus Weissenberg number, Wi. It is apparent that the
scaling prediction of Wi '?, derived from the 1-D Smolu-
chowski approximation in the previous section, agrees well
with dumbbell simulations. The slight underprediction in the
scaling factor for extension deficit upon wall contact, —0.30,
is most likely caused by the deficiency of the approxi-
mation,

~ X
d 6Wi(1-x)’
inconsistency facilitates chain-end-wall contact at higher
extensions during simulations, as shown by the higher
probability density to the left of the solid line in Fig. 4.

near the wall, as shown in Fig. 4. This
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®  WLC Dumbbell, Nk=22
4 Kratky-Porod, Nb=37, Nk=22
A Kratky-Porod, Nb=85, Nk=22
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Fig. 2. Kratky-Porod and dumbbell simulation results for the
standard deviation in dimensionless extension upon wall
contact versus Wi for chains of length N,=22. Kratky-

Porod chains consisting of 37 and 85 beads require an Ip

}
of 1 and 2.5, respectively, to reproduce 22 Kuhn steps.
Solid lines represent least square fits to the asymptotic
behavior.

This shift of the probability density to the left is more
important at smaller Wi than it is at larger Wi, which causes
an overprediction in the extension deficit scaling with Wi
at the wall. However, Kratky-Porod simulations apparently
yield a very different scaling for extension deficit of i **!
and extension deficit upon wall contact of Wi **®. This dis-
crepancy is most likely a result of either the increased
refinement of the chain or the addition of a wormlike bend-
ing potential. The figure shows Kratky-Porod simulations
for discretizations of 37 and 85 beads. Fewer number of
beads will produce results between freely-jointed chain
results and wormlike chain results. As the number of dis-
cretization points increase, results will approach those of
the wormlike chain.

The bending potential and refinement of the Kratky-
Porod model also seem to affect the standard deviation of
extension upon contact. Fig. 2 shows that dumbbell sim-
ulations yield the predicted Wi '* scaling, whereas Kratky-
Porod simulations produce a Wi *** scaling consistent with
the extension deficit scaling. With the addition of a bend-
ing potential it becomes exceedingly difficult for the chain
end to diffuse as the chain extends, limiting the fluctu-
ations in length upon contact. As a result, the scaling expo-
nent becomes more negative. Our predictions for frequen-
cy of bead-chain contact scaling of Wi** agrees with our
dumbbell simulations as shown in Fig. 3. The Kratky-
Porod simulations produce a different scaling of Wi*™.
This supports previous statements that increased discret-
ization plays an important role in chain-end-wall contact.
The diffusivity of the chain end is higher than that of an
element within the chain and as the chain itself gets closer
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WLC Dumbbeil, Nk=22
Kratky-Porod, Nb=37, Nk=22
Kratky-Porod, Nb=85, Nk=22
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Fig. 3. Kratky-Porod and dumbbell simulation results for the

dimensionless frequency of chain end-wall contact versus
Wi. Kratky-Porod chains consisting of 37 and 85 beads

require e of 1 and 2.5, respectively, to reproduce 22

Kuhn steps. Solid lines represent least square fits to the
asymptotic behavior.

X
(a) Wi =100

02

05 0.6 0.7 0.8 09 1
X

(b) Wi = 1000

Fig. 4. Comsol numerical solutions to 2-D Smoluchowski equa-
tion, the precursor to equation 12 before x has been inte-
grated out, with the solid line representing the contour of

=— %  Calculations use == =0.015, correlating
6Wi(1-x)’ 3Ny

to a 22 Kuhn step chain, and Wi of (a) 100 and (b) 1000.

to the wall, it becomes increasingly easier for the chain end
to contact the wall. Dumbbell predictions were made
assuming the diffusivity of the chain end was equal to that
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of half the chain. The addition of a chain bending potential
should counteract this effect, because diffusion perpen-
dicular to the chain should decrease. It is important to note
that experiments performed by Ladoux and Doyle on teth-
ered 21, 42, and 63 um A-phage DNA in shear flow
[Ladoux and Doyle, 2000] show that mean extension def-
icit scales with 7, which is in agreement with their and
our present theoretical predictions for bead-spring models.
Therefore it is reasonable to conclude that, either the added
bending potential only plays a large role in modeling short
chain end dynamics at the wall, or the scaling deviation is
only apparent for higher Wi than those examined by
Ladoux and Doyle.

4. Conclusion

When double tethering a DNA chain to a surface, it is
important to understand the free-chain-end dynamics of a
single-end-tethered DNA chain under shear flow. It is clear
that the wormlike chain entropic spring model is insuf-
ficient when modeling chain-end-wall contact statistics in
shear flow at least for small chains. Chain discretization
and a bending potential along the chain play an important
role in wall contact statistics. The wormlike chain entropic
spring model is capable of correctly simulating averaged
properties involving dynamics away from the wall
[Ladoux and Doyle, 2000] for large chains, but more
refinement is needed when considering dynamics very near
the wall. Dumbbell simulations produce scalings for exten-
sion deficit upon wall contact, standard deviation of exten-
sion upon wall contact, and wall contact frequency of: <1~
X~ Wi, <a>~Wi™, and f~ Wi, respectively. By
comparison, Kratky-Porod simulations produce scalings
of: <l —x>~Wi'® <> ~Wi"? and [~ WP, respec-
tively, for a 22 Kuhn step chain.

Further study is needed for freely jointed chains, to test
whether the disparity in scaling for wall-contact statistics
between dumbbell and Kratky-Porod models is due to the
addition of chain refinement or the addition of the cotrect
bending potential.
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