• Title/Summary/Keyword: Potential Functions

Search Result 1,506, Processing Time 0.026 seconds

Developmental Programming by Perinatal Glucocorticoids

  • Hong, Jun Young
    • Molecules and Cells
    • /
    • v.45 no.10
    • /
    • pp.685-691
    • /
    • 2022
  • Early-life environmental factors can have persistent effects on physiological functions by altering developmental procedures in various organisms. Recent experimental and epidemiological studies now further support the idea that developmental programming is also present in mammals, including humans, influencing long-term health. Although the mechanism of programming is still largely under investigation, the role of endocrine glucocorticoids in developmental programming is gaining interest. Studies found that perinatal glucocorticoids have a persistent effect on multiple functions of the body, including metabolic, behavioral, and immune functions, in adulthood. Several mechanisms have been proposed to play a role in long-term programming. In this review, recent findings on this topic are summarized and the potential biological rationale behind this phenomenon is discussed.

Metabolic Challenges in Anticancer CD8 T Cell Functions

  • Andrea M. Amitrano;Minsoo Kim
    • IMMUNE NETWORK
    • /
    • v.23 no.1
    • /
    • pp.9.1-9.15
    • /
    • 2023
  • Cancer immunotherapies continue to face numerous obstacles in the successful treatment of solid malignancies. While immunotherapy has emerged as an extremely effective treatment option for hematologic malignancies, it is largely ineffective against solid tumors due in part to metabolic challenges present in the tumor microenvironment (TME). Tumor-infiltrating CD8+ T cells face fierce competition with cancer cells for limited nutrients. The strong metabolic suppression in the TME often leads to impaired T-cell recruitment to the tumor site and hyporesponsive effector functions via T-cell exhaustion. Growing evidence suggests that mitochondria play a key role in CD8+ T-cell activation, migration, effector functions, and persistence in tumors. Therefore, targeting the mitochondrial metabolism of adoptively transferred T cells has the potential to greatly improve the effectiveness of cancer immunotherapies in treating solid malignancies.

Exploring the Potential of Glycolytic Modulation in Myeloid-Derived Suppressor Cells for Immunotherapy and Disease Management

  • Jisu Kim;Jee Yeon Choi;Hyeyoung Min;Kwang Woo Hwang
    • IMMUNE NETWORK
    • /
    • v.24 no.3
    • /
    • pp.26.1-26.19
    • /
    • 2024
  • Recent advancements in various technologies have shed light on the critical role of metabolism in immune cells, paving the way for innovative disease treatment strategies through immunometabolism modulation. This review emphasizes the glucose metabolism of myeloid-derived suppressor cells (MDSCs), an emerging pivotal immunosuppressive factor especially within the tumor microenvironment. MDSCs, an immature and heterogeneous myeloid cell population, act as a double-edged sword by exacerbating tumors or mitigating inflammatory diseases through their immune-suppressive functions. Numerous recent studies have centered on glycolysis of MDSC, investigating the regulation of altered glycolytic pathways to manage diseases. However, the specific changes in MDSC glycolysis and their exact functions continue to be areas of ongoing discussion yet. In this paper, we review a range of current findings, including the latest research on the alteration of glycolysis in MDSCs, the consequential functional alterations in these cells, and the outcomes of attempts to modulate MDSC functions by regulating glycolysis. Ultimately, we will provide insights into whether these research efforts could be translated into clinical applications.

Ground Surface Potential Distribution near Ground Rod Associated with Soil Structures (대지구조에 따른 접지봉 주번의 대지표면전위분포)

  • Lee, Bok-Hee;Jung, Hyun-Uk;Baek, Young-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.142-147
    • /
    • 2007
  • This paper presents the distributions of ground surface potential rises as functions of soil structure and buried depth of ground rod. To propose fundamental data relevant to the reduction of electric shock of human beings due to ground surface rise, the ground surface potential rises near the ground rod were computed and measured. Ground surface potential rises near ground rod strongly depend on the soil structure, and an increase of the buried depth of ground rod results in a decrease of the ground surface potentials. The maximum ground surface potential appeared at the just above point of ground rod. Also, the measured results were in reasonably agreement with the data computered by grounding analysis program.

TDDFT Potential Energy Functions for Excited State Intramolecular Proton Transfer of Salicylic Acid, 3-Aminosalicylic Acid, 5-Aminosalicylic Acid, and 5-Methoxysalicylic Acid

  • Jang, Sung-Woo;Jin, Sung-Il;Park, Chan-Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2343-2353
    • /
    • 2007
  • We report the application of time-dependent density functional theory (TDDFT) to the calculation of potential energy profile relevant to the excited state intramolecular proton transfer (ESIPT) processes in title molecules. The TDDFT single point energy calculations along the reaction path have been performed using the CIS optimized structure in the excited state. In addition to the Stokes shifts, the transition energies including absorption, fluorescence, and 0-0 transition are estimated from the TDDFT potential energy profiles along the proton transfer coordinate. The excited state TDDFT potential energy profile of SA and 3ASA resulted in very flat function of the OH distance in the range ROH = 1.0-1.6 A, in contrast to the relatively deep single minimum function in the ground state. Furthermore, we obtained very shallow double minima in the excited state potential energy profile of SA and 3ASA in contrast to the single minimum observed in the previous work. The change of potential energy profile along the reaction path induced by the substitution of electron donating groups (-NH2 and -OCH3) at different sites has been investigated. Substitution at para position with respect to the phenolic OH group showed strong suppression of excited state proton dislocation compared with unsubstitued SA, while substitution at ortho position hardly affected the shape of the ESIPT curve. The TDDFT results are discussed in comparison with those of CASPT2 method.

Development of a potential evaluation method for urban expansion using GIS and RS technologies (GIS와 RS를 이용한 도시확산 포텐셜 평가기법의 개발)

  • Kim, Dae-Sik;Chung, Ha-Woo
    • Journal of Korean Society of Rural Planning
    • /
    • v.10 no.3 s.24
    • /
    • pp.41-51
    • /
    • 2004
  • This study aims to develop a potential evaluation method for urban spatial expansion using remote sensing (RS) and geographic information system (GIS). A multi-criteria evaluation method with several criteria and their weighting values was introduced to evaluate the score and quantification of the potential surface around the existing cities. The six criteria with one geographic factor, slope, and five accessibility factors, time distance from center of the city, national road, interchange of expressway, a big city, and station, were defined for the potential. RS techniques were applied for classification of the actual urban expansion maps between two periods, and GIS functions were used for score of accessibility criteria with a distance decay function from geographic, road and several point maps, which was developed in this study. The new methodology was applied to a test area, Suwon, between 1986 and 1996. In order to optimize the six weighting values, this study made new findings to search the optimal combination of the weighting values from new methodology, weighted scenario method for intensity order (WSM), combined with intensity order and AHP method, including a trial and error method for sensitivity analysis to make the intensity order. The optimal combination of the weighting values by the new method generated the optimal potential surface, considering spatial trend of urban expansion in the test area.

Artificial Potential Function for Driving a Road with Traffic Light (신호등 신호에 따른 차량 주행 제어를 위한 인공 전위 함수)

  • Kim, Duksu
    • Journal of KIISE
    • /
    • v.42 no.10
    • /
    • pp.1231-1238
    • /
    • 2015
  • Traffic light rules are one among the most common and important safety rules as the directly correlate with the safety of pedestrians. Consequently, an algorithm is required to cause an automated (or semi-automated) vehicle to observe traffic light signals. We present a novel, artificial potential function to guide an automated vehicle through traffic lights. Our function consists of three potential function components representing the three traffic light colors: green, yellow, and red. The traffic light potential function smoothly changes an artificial potential field using the elapsed time for the current light and light conversion. Our traffic light potential function is combined with other potential functions to guide vehicles' movement and constructs the final artificial potential field. Using various simulations, we found or method successfully guided the vehicle to observe traffic lights while behaving like human-controlled cars.

Functions of Hepatitis B Virus- X Gene product

  • 윤영대
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1993.11a
    • /
    • pp.39-40
    • /
    • 1993
  • Hepatitis B virus (HBV)is a member of the Hepadna virus family whose members share a characteristic virion structure and genome size, around 3.2kb in a paritially double-stranded form. The genome of HBV contains four overlapping open reading frames designated as P(polymerase). C(core), S(surface antigen)and X. The X gene has potential to encode 154 amino acids protein.

  • PDF

Energy potential and feasibility of utilization for domestic forest biomass as an alternative resource (대체에너지원으로서 국내 산림바이오매스 자원의 잠재력과 이용가능성)

  • Cha, Du Song;Oh, Jae Heun;Woo, Jong Chun
    • Journal of Forest and Environmental Science
    • /
    • v.20 no.1
    • /
    • pp.110-130
    • /
    • 2004
  • This study aims to study the definition and characteristics of forest biomass as an alternative energy and to estimate the energy potential and feasibility of forest biomass utilization in domestic. Especially, significant attention is given to woody biomass such as forest residue, thinning log, etc. due to their renewable, sustainable and abundant properties. The results were summarized as follows. The utilization of these forest biomass could play an important role to activate the forest industry and increase the public benefit functions of forest, but more attention on their utilization is required and how they can be utilize more efficiently is the new task assigned to our forestry for sustainable forest management.

  • PDF

Numerov-Cooley Method on a Potential of NO Molecule (산화질소 분자 퍼텐셜에 적용한 Numerov-Cooley 방법)

  • Cho, Seon-Woog
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.125-128
    • /
    • 2007
  • In applying Numerov-Cooley method, Excel tool ‘Solver' is used to match those two wave functions propagated inward and outward, respectively. It is numerically confirmed that the same eigenvalue is obtained by using the average of two energy values of each inward and outward wave functions. This method is applied to a NO molecule potential, and we calculated the variations of the average bond distance and tunneling for a given vibrational energy. It is found that the average bond lengths increase proportionately to the vibrational energy, while the tunneling is not so sensitive to the energy changes. Rather substantial amount of tunnel effect is found for every vibrational state.