• Title/Summary/Keyword: Potassium phosphate

Search Result 479, Processing Time 0.024 seconds

Long-term Assessment of Soil Chemical Properties in Different Soil Texture Orchard Fields in Gyeongnam Province

  • Kim, Min Keun;Sonn, Yeon-Kyu;Kang, Seong-Soo;Heo, Jae-Young;Kim, Dae-Ho;Choi, Yong-Jo;Lee, Sang-Dae;Shin, Hyun-Yul;Ok, Yong Sik;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.4
    • /
    • pp.240-245
    • /
    • 2015
  • The monitoring of soil fertility changes in orchard is very important for agricultural sustainability. Field monitoring was performed to evaluate the soil chemical properties of 140 orchard (23 sites for sandy loam, 88 sites for loam, 28 sites for silt loam, and 1 site for loamy fine sand) in Gyeongnam province every 4 years from 2002 to 2014. Soil chemical properties such as pH, electrical conductivity, amount of organic matter (OM), available phosphate ($P_2O_5$), lime requirement (LR), exchangeable potassium (K), calcium (Ca), magnesium (Mg), and sodium were analyzed. The amount of OM, exchangeable K, Ca, and Mg were significantly increased as cultivation year increases. The frequency distribution within optimum range of subsoil chemical properties in 2014 was 34.3% for pH, 35.0% for OM, 17.1% for available $P_2O_5$, 22.9% for exchangeable K, 15.7% for exchangeable Ca, and 22.1% for exchangeable Mg. In addition, the available $P_2O_5$ and exchangeable calcium were excess level with portions of 69.3% and 48.6%, respectively. The soil chemical properties in the topsoil and subsoil showed that soil pH was significantly higher in sandy loam soil than those from the loam and silt loam soils. The OM, exchangeable K, Mg, and LR of loam soil were higher than those from the sandy loam soil. These results indicated that a balanced management of soil chemical properties as affected by soil texture can improve the amount of fertilizer applied for sustainable agriculture in orchard field.

Effects of Nitrogen Fertilization on Leaf Yield and Pyranocurmarine Accumulation in Angelica gigas Nakai

  • Seo, Young-Jin;Kim, Jong-Su;Park, Kee-Choon;Park, Chun-Geun;Ahn, Young-Sup;Cha, Seon-Woo;Kang, Yoon-Ju
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.421-427
    • /
    • 2015
  • Angelica gigas Nakai is one of the most widely used herbal medicines and is known to have many pharmaceutical effects including an anti-oxidant, anti-cancer etc. This study was carried out to investigate an effect of fertilization on leaf yield, production of dry-matter and accumulation of pyranocurmarine compounds such as decursin (DE) and decursinol angelate (DA) in Angelica gigas Nakai. Effect of fertilization was determined from response surface regression equation composing of 2 by 3 factorial arrangement of urea, sodium dihydrogen phosphate and potassium chloride. Yield of leaf in Angelica gigas Nakai significantly increased until 100 days after transplanting. Production of leaf also tended to increase with increasing nitrogen fertilization. Model of regression equation showed that leaf production depended upon nitrogen ($Pr>{\mid}t{\mid}$ : 0.087, 0.256 and 0.079). Also, statistical results between nitrogen application level and production of dry-matter showed significant relationship (p<0.05) and contents of dry-matter was highest in 10 kg 10a-1 treatment on 24 Sep. Active compound isolated and purified from leaf and root of Angelica gigas Nakai was identified as DE and DA by gas chromatograph-mass spectrophotometry (GC-MS). Concentration of DA as prevalent compound in leaf was highest on 20 Aug. but decreased on 24 Sep. Amount of DE and DA accumulated in Angelica gigas Nakai significantly increased with growth stages and nitrogen level. The result of our investigation imply that nitrogen fertilization is important factor for production of leaf and accumulation of pyranocurmarine in Angelica gigas Nakai as a medicinal/food materials.

Changes of Chemical Characteristics of Soil Solution In Paddy Field from Fifty-Eight Years Fertilization Experiments

  • Kim, Myung Sook;Kim, Yoo Hak;Park, Seong Jin;Lee, Chang Hoon;Yun, Sun Gang;Sonn, Yeon Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.1
    • /
    • pp.22-29
    • /
    • 2015
  • The objectives of this study were to monitor the changes in soil solution nutrients and to evaluate their effect on rice uptake and yield. The changes of chemical characteristics of paddy soil solution were examined from the 58th fertilization experiment in which the continuous rice cropping experiment started in 1954 at the National Academy of Agricultural Science. The treatments were no fertilization (No fert.), inorganic fertilization (NPK), inorganic fertilizer plus rice straw compost (NPKC) and inorganic fertilizer plus silicate and lime fertilizer as a soil amendment (NPKCLS). The fertilizers were added at rates of standard fertilizer application rate in which nitrogen (N), phosphate ($P_2O_5$), potassium ($K_2O$), and sililcate ($SiO_2$) were applied at rates of $75{\sim}150kg\;ha^{-1}$, $70{\sim}86kg\;ha^{-1}$, $75{\sim}86kg\;ha^{-1}$, and $7.5Mg\;ha^{-1}$ respectively and lime was applied to neutralize soil acidity until 6.5. Average Electrical Conductivity (EC) of soil solution in NPKCLS and NPKC ranged from 1.16 to $2.00dS\;m^{-1}$. The $NH{_4}^+$ and $K^+$ levels in NPKCLS and NPKC were higher than that of the other treatments, due to high supply power of rice straw compost. The content of $H_3SiO{_4}^-$ was higher in NPKCLS because of silicate application. The dominant ions in soil solution were $Ca^{2+}$, $Mg^{2+}$ and $Na^+$ among cations and $HCO{_3}^-$, $SO{_4}^{2-}$, and $Cl^-$ among anions in all treatments. The continuous application of inorganic fertilizers plus rice straw compost (NPKC) and silicate fertilizer (NPKCLS) led to the changes of various chemical composition in soil solutions. Also, they had a significant impact on the improvement of rice inorganic uptake and grain yield. Especially, inorganic uptake by rice in NPKC and NPKCLS significantly increased than those in NPK plot; 14~46% for T-N, 32~36% for P, 43~57% for K, and 45~77% for Si. Therefore, the combined application of inorganic fertilizers with organic compost as a soil amendment is considered as the best fertilization practice in the continuous rice cropping for the improvement of crop productivity and soil fertility.

Microbial Diversity and Community Analysis in Lettuce or Cucumber Cultivated Greenhouse Soil in Korea (상추 및 오이 시설재배 토양의 미생물 다양성 분석)

  • Kim, Byung-Yong;Weon, Hang-Yeon;Park, In-Cheol;Lee, Sang-Yeob;Kim, Wan-Gyu;Song, Jae-Kyeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1169-1175
    • /
    • 2011
  • The soil chemical properties, microbial community structures and biochemical properties of lettuce or cucumber-cultivated greenhouse soil samples were analyzed to assess soil health and characterize microbial distribution in 8 locations in Korea. Although most of chemical properties were within the soil management guidelines, the available phosphate, and the contents of exchangeable potassium and calcium were higher than those of recommended levels. In the culture-dependent analysis, 841 bacterial strains were isolated from the greenhouse soils and were identified at the genus level by 16S rRNA gene sequences analysis. The dominant bacterial genera were Bacillus (35.7%), Microbacterium (9.3%), Arthrobacter (5.7%) and Lysobacter (5.1%). The abundance of pseudomonads was highly variable depending on the soil samples. In the culture-independent analysis, soil microbial community was investigated by using phospholipid fatty acid (PLFA) method. Principal component analysis (PCA) showed that a specific grouping for microbial community structure in the greenhouse soils was not observed based on cultivated crops and investigated sites. The results revealed that the greenhouses soils examined are relatively sound managed in terms of soil chemical contents and microbial properties.

Effects of Nitrogen Fertilization on Growth of Populus sibirica and Ulmus pumila Seedlings and Soil Properties in a Semi-Arid Area, Mongolia (몽골 반건조지에서 질소 시비가 백양나무와 비술나무 묘목의 생장 및 토양 특성에 미치는 영향)

  • Chang, Hanna;Han, Seung Hyun;Kim, Seongjun;Park, Min Ji;An, Jiae;Kang, Hoduck;Yi, Myong-Jong;Akhmadi, Khaulenbek;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.249-256
    • /
    • 2015
  • This study was conducted to investigate the effects of different levels and types of nitrogen fertilizer on seedlings and soil chemical properties in a semi-arid area, Mongolia. 2-year-old Populus sibirica and 4-year-old Ulmus pumila seedlings were planted in May 2014. Six treatments with three levels of nitrogen (low-level: urea $5g\;tree^{-1}$; medium-level: urea $15g\;tree^{-1}$, ammonium sulfate $33g\;tree^{-1}$, urea $15g\;tree^{-1}$ with potassium phosphate $10g\;tree^{-1}$; high-level: urea $30g\;tree^{-1}$) were applied and for the medium-level of nitrogen, different types of fertilizer were treated. Survival rate, root collar diameter (RCD) growth rate, leaf nitrogen concentration of seedlings, and soil chemical properties were determined in August 2014. The seedling survival rate of both species decreased as the level of nitrogen increased. This result can be explained by water stress caused by nitrogen fertilization in arid regions. The RCD growth rate of P. sibirica was significantly decreased by the treatment of high-level of nitrogen due to excessive nitrogen fertilization, and was increased by the treatment of ammonium sulfate due to sulfur which might promote nitrogen uptake. The leaf nitrogen concentration of P. sibirica did not change by the treatment of low-level of nitrogen, and was increased by the treatment of medium-level of nitrogen. There were no significant differences in the RCD growth rate and the leaf nitrogen concentration of U. pumila among the six treatments. None of soil chemical properties was affected by nitrogen fertilization. Overall, the low-level of nitrogen showed no effect on seedlings and soil chemical properties, except on survival rate of U. pumila and the high-level of nitrogen was considered excessive fertilization. Continuous monitoring of medium-level nitrogen fertilization including the ammonium sulfate, which increased early growth of seedlings, would be needed to elucidate the effect of fertilization on seedling growth and soil properties in a semi-arid region.

Growth Characteristic of Pinus densiflora by Soil Generated at Civil Works Site (현장발생토 활용 식재기반 조성유형별 소나무 생육 특성 평가)

  • Oh, Deuk-Kyun;Kim, Phil-Lip;Yoon, Yong-Han;Kim, Won-Tae
    • Journal of Environmental Science International
    • /
    • v.28 no.8
    • /
    • pp.655-667
    • /
    • 2019
  • This research aims to identify the possibility of developing A horizon resources that can be used for construction and civil engineering work. As such, the utility of A horizon resources was examined by establishing planting ground through a mixture of soil layers and by analyzing the growth and development of Pinus densiflora. The physicochemical and physical properties of the soil were as follows: the A horizon was sandy clay loam, B horizon was sandy loam, and the mixture of two layers appeared as sandy loam, which was identical to the B horizon. The experimental groups did not show any significant difference in their physical properties of porosity and degree of water-stable aggregates. With regards to chemical properties, the A horizon as well as the mixture of A and B horizon showed acidity while the B horizon showed alkalinity. The figures of organic matter, total nitrogen, available phosphate, and replaceable potassium were greater as the A horizon content increased, whereas the figures of replaceable calcium, replaceable magnesium, and conductivity increased as the A horizon content decreased. As a result of the growth and development of Pinus densiflora in each planting ground, the final survival rates were all above 100%. However, the tree height and the rate of growth for the diameter of root were higher in the order of A horizon > A horizon + B horizon > B horizon,indicating that the increased A horizon content is related to the growth and development of Pinus densiflora. The treatment of soil with improvement agents, used to recover the functions of in-situ soil showing poor growth and development, did not have a clear impact on the soil texture and porosity. However, the degree of water-stable aggregates increased significantly when using O horizon as the soil improvement agent among the types of in-situ soil. In contrast, all items related to the chemical properties showed significant differences following the treatment by soil improvement agents. The survival rate according to the treatment of soil improvement agents for the growth and development of Pinus densiflora was higher in the order of organic horizon = no treatment > compound fertilizer > organic fertilizer + compound fertilizer > organic fertilizer; this result was statistically significant with a marginal significance value of the log-rank test(p < 0.05).

Optimization of an Industrial Medium and Culture Conditions for Probiotic Weissella cibaria JW15 Biomass Using the Plackett-Burman Design and Response Surface Methodology

  • Yu, Hyung-Seok;Lee, Na-Kyoung;Kim, Won-Ju;Lee, Do-Un;Kim, Jong-Ha;Paik, Hyun-Dong
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.5
    • /
    • pp.630-637
    • /
    • 2022
  • The objective of this study was to optimize industrial-grade media for improving the biomass production of Weissella cibaria JW15 (JW15) using a statistical approach. Eleven variables comprising three carbon sources (glucose, fructose, and sucrose), three nitrogen sources (protease peptone, yeast extract, and soy peptone), and five mineral sources (K2HPO4, potassium citrate, ⳑ-cysteine phosphate, MgSO4, and MnSO4) were screened by using the Plackett-Burman design. Consequently, glucose, sucrose, and soy peptone were used as significant variables in response surface methodology (RSM). The composition of the optimal medium (OM) was 22.35 g/l glucose, 15.57 g/l sucrose, and 10.05 g/l soy peptone, 2.0 g/l K2HPO4, 5.0 g/l sodium acetate, 0.1 g/l MgSO4·7H2O, 0.05 g/l MnSO4·H2O, and 1.0 g/l Tween 80. The OM significantly improved the biomass production of JW15 over an established commercial medium (MRS). After fermenting OM, the dry cell weight of JW15 was 4.89 g/l, which was comparable to the predicted value (4.77 g/l), and 1.67 times higher than that of the MRS medium (3.02 g/l). Correspondingly, JW15 showed a rapid and increased production of lactic and acetic acid in the OM. To perform a scale-up validation, batch fermentation was executed in a 5-l bioreactor at 37℃ with or without a pH control at 6.0 ± 0.1. The biomass production of JW15 significantly improved (1.98 times higher) under the pH control, and the cost of OM was reduced by two-thirds compared to that in the MRS medium. In conclusion, OM may be utilized for mass producing JW15 for industrial use.

A Study on the Leaching Effect and Selective Recovery of Lithium Element by Persulfate-based Oxidizing Agents from Waste LiFePO4 Cathode (과황산계 산화제에 따른 폐LiFePO4 양극재에서 리튬의 침출 효과와 선택적 회수에 대한 연구)

  • Kim, Hee-Seon;Kim, Dae-Weon;Jang, Dae-Hwan;Kim, Boram;Jin, Yun-Ho;Chae, Byung-Man;Lee, Sang-Woo
    • Resources Recycling
    • /
    • v.31 no.4
    • /
    • pp.40-48
    • /
    • 2022
  • In waste lithium iron phosphate (LFP) batteries, the cathode material contains approximately 4% lithium. Recycling the constituent elements of batteries is important for resource circulation and for mitigating the environmental pollution. Li contained in the waste LFP cathode powder was selectively leached using persulfate-based oxidizing agents, such as sodium persulfate, potassium persulfate, and ammonium persulfate. Leaching efficiency and waste LFP powder properties were compared and analyzed. Pulp density was used as a variable during leaching, which was performed for 3 h under each condition. The leaching efficiency was calculated using the inductively coupled plasma (ICP) analysis of the leachate. All types of persulfate-based oxidizing agents used in this study showed a Li leaching efficiency over 92%. In particular, when leaching was performed using (NH4)2S2O8, the highest Li leaching percentage of 93.3% was observed, under the conditions of 50 g/L pulp density and an oxidizing agent concentration of 1.1 molar ratio.

Investigation of mulberry farm's soil properties and mulberry leaf nutritive components in local areas of Korea

  • Ju, Wan-Taek;Jeong, Chan Young;Kim, Seong-Wan;Park, Jong Woo;Kim, Nam-Suk;Kang, Sang Kuk;Kim, Kee-Young;Kweon, Hae-Yong;Lee, Seul-Bi;Kim, Woong;Gwak, Byeong-Sam;Han, Bong-Tae;Choi, Moon-Tae;Lee, Yoo Beom;Seok, Young-Seek
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.45 no.1
    • /
    • pp.35-41
    • /
    • 2022
  • Mulberry is a hardy, perennial, deep-rooted plant capable of thriving under diverse agroclimatic conditions. The selection of suitable land and appropriate variety can help the sustainable mulberry field. However, no conclusive and comprehensive investigation has been conducted on the mulberry soil properties and nutritional composition of mulberry cultivars from Korea local areas in previous studies. In our study, soil properties and mulberry leaf components of Korea local mulberry farms were briefly investigated. In result, the soil organic matter (OM) content was significantly high in Buan (6.81%) and Jangseong (6.14%). In contrast, available phosphate (P2O5) was different in each local area. To investigate relationship between soil property and nutritive component of mulberry leaf, Cheongil leaf samples from 8 local areas were analyzed. Among the macrominerals (K+, Ca2+, Na+, and Mg2+), the concentration of K varied from (1884±9.36) mg/100 g to (2685±11.5) mg/100 g. The potassium (K+) of Cheongil leaf in Sangju was the highest at 2685 mg/100 g. Besides macrominerals, flavonoids, total dietary fiber contents and moisture of Cheongil leaf samples were studied in the 8 local areas. In terms of these contents, the variation was largely depending on the local areas. This study provides a possible industrial use of mulberry, and holds promise to enhance the overall profitability of sericulture.

Rapid and simultaneous determination of metabolites of organic solvents in human urine by high-performance liquid chromatography using a monolithic column (Monolithic 칼럼을 이용한 뇨 중 유기용매 대사체의 신속한 HPLC 동시 분석)

  • Han, Sang Beom;Lee, Sang-Ju;Lee, Cheol-Woo;Yoon, Seo Hyun;Joung, Sun Kyung;Youm, Jeong-Rok
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.433-440
    • /
    • 2006
  • A HPLC/UV method was developed and validated for the rapid and simultaneous determination of urinary metabolites of organic solvents, mandelic acid, hippuric acid, phenylglyoxylic acid, ortho-, meta- and para-methylhippuric acid, using a monolithic column. The mobile phase was composed of tetrabutylammonium bromide as ion-pairing reagent with a flow rate of 2.4 mL/min. The total run time was less than 2.5 min for all six analytes. Good linearities were obtained for all the metabolites with correlation coefficients above 0.9993. Intra-day precision, accuracy and inter-day precision was 0.01~7.32%, 83.9~116.3% and 0.01~7.16%, respectively. The method was validated and confirmed by quantification of the quality assurance samples of Industrial Safety and Health Research Institute, Korea Occupational Safety and Health Agency.